
BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

47

Chapter	3
Working with Forms

ch03.indd 47 6/18/10 4:14:38 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 48	 Zend Framework: A Beginner’s Guide

Key Skills & Concepts

●	 Learn to programmatically create forms and form elements

●	 Understand how to filter and validate user input

●	� Protect your forms from Cross-Site Request Forgery (CSRF) attacks and
spambots

●	 Control the appearance of form elements and error messages

●	 Create a working contact form

In the previous chapter, you learned how the Zend Framework implements the Model-View-
Controller pattern, and you looked underneath the hood of the example application to see how
it works. You also started to flesh out the example application by adopting a modular directory
structure, adding a master layout, and creating custom controllers, views, and routes for static
content.

Now, while you can certainly use the Zend Framework to serve up static content, doing so
is a lot like using a bulldozer to knock over a tower of plastic blocks. There’s nothing stopping
you from doing it, but it’s not really what the bulldozer was intended for, and you’re liable to
face hard questions about why there’s a bulldozer in your living room in the first place! The
Zend Framework is similar, in that it’s intended to provide robust, elegant, and extensible
solutions to complex Web application development tasks. The more complex the task, the
better suited it is to the power and flexibility of the framework…and the more fun you’ll have
knocking it down!

In this chapter, you’ll learn how the Zend Framework can simplify one of the most
common application development tasks: creating Web forms and processing user input. You’ll
also apply this knowledge to add some interactivity to the SQUARE example application, by
creating a contact form. So without further ado, let’s jump right in!

Understanding Form Basics
To demonstrate how the Zend Framework can help you with forms, a brief yet illustrative
example will suffice. If you’re like most PHP developers, chances are that you’ve written
a form-processing script like the following one at some point in your career:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 </head>

ch03.indd 48 6/18/10 4:14:38 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 49

 <body>
 <h2>Create Item</h2>
 <?php
 if (!isset($_POST['submit'])) {
 // no POST submission, display form
 ?>
 <form method="post" action="/item/create">
 <table>
 <tr>
 <td>Item name:</td>
 <td><input type="text" name="name" size="30" /></td>
 </tr>

 <tr>
 <td>Item quantity:</td>
 <td><input type="text" name="qty" size="3" /></td>
 </tr>

 <tr>
 <td colspan="2">
 <input type="submit" name="submit" value="Submit" />
 </td>
 </tr>
 </table>
 </form>
 <?php
 } else {
 // POST submission, validate input
 if (trim($_POST['name']) == '') {
 die('ERROR: Missing value - Item name');
 }
 if (trim($_POST['qty']) == '') {
 die('ERROR: Missing value - Item quantity');
 }
 if ($_POST['qty'] <= 0) {
 die('ERROR: Invalid value - Item quantity');
 }

 // process input
 // eg: save to database
 // attempt a connection
 try {
 $pdo = new PDO('mysql:dbname=test;host=localhost', 'user',
'pass');

 // create and execute INSERT query
 $name = $pdo->quote($_POST['name']);
 $qty = $pdo->quote($_POST['qty']);

ch03.indd 49 6/18/10 4:14:38 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 50	 Zend Framework: A Beginner’s Guide

 $sql = "INSERT INTO shoppinglist (name, qty) VALUES ($name,
$qty)";
 $pdo->exec($sql) or die("ERROR: " . implode(":", $pdo-
>errorInfo()));

 // close connection
 unset($pdo);

 // display success message
 echo 'Thank you for your submission';
 } catch (Exception $e) {
 die("ERROR: " . $e->getMessage());
 }
 }
 ?>
 </body>
</html>

There’s nothing very clever or complicated here. This script is divided into two parts,
split by a conditional test that inspects the $_POST variable to determine if the form has been
submitted. The first half displays an input form containing two fields and a submit button; the
second half validates the input to ensure that it is in the correct format and then proceeds to
escape it and insert it into a database.

Figure 3-1 illustrates what the form looks like.
Now, while the script and general approach that you’ve just seen work in practice, there’s

no denying that it has a couple of problems:

The same script file contains both HTML interface elements and PHP business logic. As ●●

discussed in the previous chapter, this is both messy to look at and hard to maintain. It’s
also hard to enforce consistency between forms, since the code required to produce each
form is customized to a very high degree.

Every time you add a new field to the form in the first half of the script, you need to add a ●●

corresponding set of validation tests and error messages to the second half of the script. This
is annoying, and often repetitive; witness
that the first two tests in the previous
example do essentially the same thing.

There’s no way to reuse validation tests ●●

from one form in other forms (unless you
had the foresight to package them into
classes or functions from the get-go). As a
result, you often end up writing the same
code time and time again, especially when
working with forms that perform related or
similar operations.

Figure 3-1  �A form created using standard
HTML markup

ch03.indd 50 6/18/10 4:14:38 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 51

The Zend Framework comes with a set of components, collectively referred to as Zend_
Form, which addresses these problems. To illustrate, consider the following example, which
uses Zend_Form to produce a result equivalent to the previous script:

<?php
class Form_Item_Create extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/item/create')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Item name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Alpha', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create text input for quantity
 $qty = new Zend_Form_Element_Text('qty');
 $qty->setLabel('Item quantity:');
 $qty->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Int', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($name)
 ->addElement($qty)
 ->addElement($submit);

 }
}

class ExampleController extends Zend_Controller_Action
{

ch03.indd 51 6/18/10 4:14:39 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 52	 Zend Framework: A Beginner’s Guide

 public function formAction()
 {
 $form = new Form_Item_Create;
 $this->view->form = $form;
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $pdo = new PDO('mysql:dbname=test;host=localhost', 'user',
'pass');
 $sql = sprintf("INSERT INTO shoppinglist (name, qty)
 VALUES ('%s', '%d')", $values['name'], $values['qty']);
 $pdo->exec($sql);
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('Thank you for your submission');
 $this->_redirect('/index/success');
 }
 }
 }
}

Figure 3-2 illustrates what the form looks like.
You’ll immediately notice three things about the code that creates the form in Figure 3-2:

There isn’t a single line of HTML code in the script. Form and form elements are ●●

represented as PHP objects, and they are configured using object methods. This ensures
consistency and produces a standards-compliant Web form.

Predefined validators and filters are available for common input validation and sanitization ●●

tasks. This reduces the amount of work involved, produces more maintainable code,
and avoids repetition. Validators can also be combined or extended to support custom
requirements.

Validators are specified at the same time as ●●

form fields. This allows the form to “know”
what each field can support and to easily
identify the source of input errors. A single
field can also be associated with multiple
validators for more stringent input validation.

It should be clear from these points that
Zend_Form provides a convenient, maintainable,
and extensible solution for input form creation and
data validation. The remainder of this chapter will
explore Zend_Form in detail, illustrating it in a
practical context.

Figure 3-2  �A form created using the
Zend_Form component

ch03.indd 52 6/18/10 4:14:39 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 53

Creating Forms and Form Elements
From the previous section, you know that Zend_Form offers an object-oriented API for
generating forms and validating user input. Under the Zend_Form approach, forms are
represented as instances of, or objects inheriting from, the Zend_Form base class. This
base class exposes a number of methods to control the operation of the form, including the
setAction() method to set the form’s action URL and the setMethod() method to set the
submission method. There’s also a catch-all setAttribs() method, which allows you to set
other form attributes. Here’s an example of using these methods:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/my/action')
 ->setAttribs(array(
 'class' => 'form',
 'id' => 'example'
))
 ->setMethod('post');
 }
}

Form elements are added by instantiating objects of the corresponding Zend_Form_
Element_* class, setting element properties via class methods, and then attaching them to the
form with the addElement() method. Here’s an example of adding a text input and a submit
button to a form:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/my/action')
 ->setAttribs(array(
 'class' => 'form',
 'id' => 'example'
))
 ->setMethod('post');

 // create text input for title
 $title = new Zend_Form_Element_Text('title');
 $title->setLabel('Title:')
 ->setOptions(array(

ch03.indd 53 6/18/10 4:14:39 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 54	 Zend Framework: A Beginner’s Guide

 'size' => '35'
));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit', array(
 'label' => 'Submit',
 'class' => 'submit'
));

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit);
 }
}

Element objects can be configured either by passing values to the object constructor or
by using named object methods. In the previous example, the object constructor for the text
input element was passed the element name in the constructor, and the setLabel() and
setOptions() methods were then used to set the element label and display properties,
respectively. On the other hand, the submit button was configured directly in the object
constructor, which was passed an array of options as the second argument.

Tip
You can also attach descriptions to form fields with the setDescription() method.

If you prefer, you can also create form elements using the createElement() method,
by passing the element type to the method as its first argument. Here’s an example, which is
equivalent to the previous one:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/my/action')
 ->setAttribs(array(
 'class' => 'form',
 'id' => 'example'
))
 ->setMethod('post');

 // create text input for title
 $title = $this->createElement('text', 'title', array(
 'label' => 'Title:',
 'size' => 35,
));

ch03.indd 54 6/18/10 4:14:40 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 55

 // create submit button
 $submit = $this->createElement('submit', 'submit', array(
 'label' => 'Submit',
 'class' => 'submit'
));

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit);

 }
}

Tip
In many of the code listings in this chapter, you’ll see examples of method chaining,
wherein one method appears to invoke another. This is an example of the Zend
Framework’s “fluent interface,” which provides a convenient shortcut to configure form
objects with minimal additional coding. The end result is also significantly more readable.
You can read more about fluent interfaces in the links at the end of this chapter.

Working with Form Elements
By default, the Zend Framework ships with definitions for 16 form elements, ranging from
simple text input elements to more complex multiple selection lists, and it’s useful to learn
more about them. Table 3-1 gives a list of these 16 elements, together with their corresponding
class names.

The following sections examine these in more detail.

Text and Hidden Fields
Text input fields, password input fields, and larger text input areas are represented by the
Zend_Form_Element_Text, Zend_Form_Element_Password, and Zend_Form_Element_
Textarea classes, respectively, while hidden form fields are represented by the Zend_Form_
Element_Hidden class. The following example demonstrates these elements in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name

ch03.indd 55 6/18/10 4:14:40 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 56	 Zend Framework: A Beginner’s Guide

 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('id' => 'fname'));

 // create password input
 $pass = new Zend_Form_Element_Password('pass');
 $pass->setLabel('Password:')
 ->setOptions(array('id' => 'upass'));

 // create hidden input
 $uid = new Zend_Form_Element_Hidden('uid');
 $uid->setValue('49');

 // create text area for comments
 $comment = new Zend_Form_Element_Textarea('comment');
 $comment->setLabel('Comment:')
 ->setOptions(array(
 'id' => 'comment',

Element Class Description

Zend_Form_Element_Text Text input field

Zend_Form_Element_Hidden Hidden field

Zend_Form_Element_Password Password field

Zend_Form_Element_Radio Radio button

Zend_Form_Element_Checkbox Check box

Zend_Form_Element_MultiCheckbox Group of related check boxes

Zend_Form_Element_Select Selection list (single)

Zend_Form_Element_MultiSelect Selection list (multiple)

Zend_Form_Element_Textarea Text input field

Zend_Form_Element_File File input field

Zend_Form_Element_Image Image

Zend_Form_Element_Button Button

Zend_Form_Element_Hash Unique string (for session identification)

Zend_Form_Element_Captcha CAPTCHA (for spam filtering)

Zend_Form_Element_Reset Reset button

Zend_Form_Element_Submit Submit button

Table 3-1  Form Element Classes Included with the Zend Framework

ch03.indd 56 6/18/10 4:14:40 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 57

 'rows' => '10',
 'cols' => '30',
));

 // attach elements to form
 $this->addElement($name)
 ->addElement($pass)
 ->addElement($uid)
 ->addElement($comment);
 }
}

Figure 3-3 illustrates the result.

Radio Buttons and Checkboxes
Radio buttons are represented by the Zend_
Form_Element_Radio class, while check
boxes are represented by the Zend_Form_
Element_Checkbox class. Here’s an example
of these two classes in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('id' => 'fname'));

 // create radio buttons for type
 $type = new Zend_Form_Element_Radio('type');
 $type->setLabel('Membership type:')
 ->setMultiOptions(array(
 'silver' => 'Silver',
 'gold' => 'Gold',
 'platinum' => 'Platinum'
))
 ->setOptions(array('id' => 'mtype'));

 // create checkbox for newsletter subscription
 $subscribe = new Zend_Form_Element_Checkbox('subscribe');
 $subscribe->setLabel('Subscribe to newsletter')

Figure 3-3  �A form with text and hidden input
elements

ch03.indd 57 6/18/10 4:14:41 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 58	 Zend Framework: A Beginner’s Guide

 ->setCheckedValue('yes')
 ->setUncheckedValue('no');

 // attach elements to form
 $this->addElement($name)
 ->addElement($type)
 ->addElement($subscribe);
 }
}

The setMultiOptions() method of the Zend_Form_Element_Radio object accepts
an array, and uses it to set the list of available radio button options. The keys of the array
represent the form values that will be submitted, while the corresponding values represent
the human-readable labels for each option. Similarly, the setCheckedValue() and
setUncheckedValue() methods of the Zend_
Form_Element_Checkbox object allow you to
customize the value for the element’s checked and
unchecked states. By default, these values are set to
1 and 0, respectively.

Figure 3-4 illustrates the result.
If you’d like the user to select from a set of

options, the Zend_Form_Element_MultiCheckbox
class is often a better bet than the Zend_Form_
Element_Checkbox class, because it exposes
a setMultiOptions() method that allows
for multiple items to be selected. The resulting
collection is then formatted and submitted as an
array. Here’s an example of it in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('id' => 'fname'));

 // create radio buttons for type
 $type = new Zend_Form_Element_Radio('type');
 $type->setLabel('Pizza crust:')

Figure 3-4  �A form with radio buttons
and check boxes

ch03.indd 58 6/18/10 4:14:41 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 59

 ->setMultiOptions(array(
 'thin' => 'Thin',
 'thick' => 'Thick'
))
 ->setOptions(array('id' => 'type'));

 // create checkbox for toppings
 $toppings = new Zend_Form_Element_MultiCheckbox('toppings');
 $toppings->setLabel('Pizza toppings:')
 ->setMultiOptions(array(
 'bacon' => 'Bacon',
 'olives' => 'Olives',
 'tomatoes' => 'Tomatoes',
 'pepperoni' => 'Pepperoni',
 'ham' => 'Ham',
 'peppers' => 'Red peppers',
 'xcheese' => 'Extra cheese',
));

 // attach elements to form
 $this->addElement($name)
 ->addElement($type)
 ->addElement($toppings);
 }
}

Figure 3-5 illustrates what the result looks like.

Selection Lists
Single- and multiple-selection lists are supported
through the Zend_Form_Element_Select and
Zend_Form_Element_MultiSelect classes. Like the
Zend_Form_Element_MultiCheckbox class, they
too expose a setMultiOptions() method that
can be used to set up the list of available options.
The following example demonstrates both these
element types in action:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

Figure 3-5  �A form with radio buttons
and multiple check boxes

ch03.indd 59 6/18/10 4:14:41 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 60	 Zend Framework: A Beginner’s Guide

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('id' => 'fname'));

 // create selection list for source country
 $from = new Zend_Form_Element_Select('from');
 $from->setLabel('Travelling from:')
 ->setMultiOptions(array(
 'IN' => 'India',
 'US' => 'United States',
 'DE' => 'Germany',
 'FR' => 'France',
 'UK' => 'United Kingdom'
));

 // create multi-select list for destination countries
 $to = new Zend_Form_Element_MultiSelect('to');
 $to->setLabel('Travelling to:')
 ->setMultiOptions(array(
 'IT' => 'Italy',
 'SG' => 'Singapore',
 'TR' => 'Turkey',
 'DK' => 'Denmark',
 'ES' => 'Spain',
 'PT' => 'Portugal',
 'RU' => 'Russia',
 'PL' => 'Poland'
));

 // attach elements to form
 $this->addElement($name)
 ->addElement($from)
 ->addElement($to);
 }
}

Figure 3-6 illustrates the result.

File Upload Fields
If you’re looking to upload one or more files
through a form, you’ll need the Zend_Form_
Element_File class, which provides a browseable
file input box. Here’s an example of it in use:

<?php
class Form_Example extends Zend_Form
{ Figure 3-6  �A form with selection lists

ch03.indd 60 6/18/10 4:14:42 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 61

 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setEnctype('multipart/form-data')
 ->setMethod('post');

 // create file input for photo upload
 $photo = new Zend_Form_Element_File('photo');
 $photo->setLabel('Photo:')
 ->setDestination('/tmp/upload');

 // attach elements to form
 $this->addElement($photo);
 }
}

Caution
Remember that you must set the form encoding type
to 'multipart/form-data' for form uploads to
be correctly handled. This can be done using the
setEnctype() method of the form object.

Figure 3-7 illustrates what it looks like.

Tip
If you’re trying to upload multiple related files, there’s a convenient setMultiFile()
method that generates a sequence of file input fields and saves you the hassle of
instantiating multiple Zend_Form_Element_File objects. You’ll see an example of this in
the next chapter.

Buttons
Every form needs a submit button, and some also need a reset button. These two critical form
elements are represented by the Zend_Form_Element_Submit and Zend_Form_Element_Reset
classes, respectively, and they’re illustrated in the next listing:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for title

Figure 3-7  A form with file input fields

ch03.indd 61 6/18/10 4:14:42 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 62	 Zend Framework: A Beginner’s Guide

 $title = new Zend_Form_Element_Text('title');
 $title->setLabel('Title:')
 ->setOptions(array('size' => '35'));

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit');

 // create reset button
 $reset = new Zend_Form_Element_Reset('reset');
 $reset->setLabel('Cancel');

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit)
 ->addElement($reset);
 }
}

Figure 3-8 illustrates the resulting output.
If you’re after a more generic form button,

you’ll find it in the Zend_Form_Element_Button
class, which provides a simple, clickable
form button that is useful for many different
purposes. Image buttons can be generated with
the Zend_Form_Element_Image class; use the
setImage() method to specify the source image
for the button. Here’s an example of one such
image button:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for title
 $title = new Zend_Form_Element_Text('title');
 $title->setLabel('Title:')
 ->setOptions(array('size' => '35'));

 // create image submit button
 $submit = new Zend_Form_Element_Image('submit');
 $submit->setImage('/images/submit.jpg');

Figure 3-8  �A form with submit and reset
buttons

ch03.indd 62 6/18/10 4:14:42 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 63

 // attach elements to form
 $this->addElement($title)
 ->addElement($submit);
 }
}

Figure 3-9 illustrates the resulting output.

Hash and CAPTCHA Fields
The Zend Framework includes two “special” form
elements to assist in maintaining input security: the
Hash and CAPTCHA elements. These are represented by the Zend_Form_Element_Hash and
Zend_Form_Element_Captcha classes, respectively.

The Hash element uses a salt value to generate a unique key for the form and store it in the
session. When the form is submitted, the hash value submitted with the form is automatically
compared to the value stored in the session. If a match is found, the form submission is
assumed to be genuine. If there is a mismatch, it’s a reasonable supposition that the form has
been hijacked and is being used in a Cross-Site Request Forgery (CSRF) attack.

Here’s an example of using this element:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for number
 $cc = new Zend_Form_Element_Text('ccnum');
 $cc->setLabel('Credit card number:')
 ->setOptions(array('size' => '16'));

 // create text input for amount
 $amount = new Zend_Form_Element_Text('amount');
 $amount->setLabel('Payment amount:')
 ->setOptions(array('size' => '4'));

 // create hash
 $hash = new Zend_Form_Element_Hash('hash');
 $hash->setSalt('hf823hflw03j');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Submit');

 // attach elements to form

Figure 3-9  A form with an image button

ch03.indd 63 6/18/10 4:14:42 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 64	 Zend Framework: A Beginner’s Guide

 $this->addElement($cc)
 ->addElement($amount)
 ->addElement($hash)
 ->addElement($submit);
 }
}

The CAPTCHA element automatically generates a CAPTCHA verification input, which
is a useful tool to filter out automated form submissions. More and more Web sites are using
CAPTCHAs to reduce the number of false registrations and/or spam messages received
through online forms. Although manually generating and verifying a CAPTCHA is a tedious
process, the Zend_Form_Element_Captcha makes it as simple as adding a few lines of code to
your form. Here’s an example:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for user name
 $name = new Zend_Form_Element_Text('username');
 $name->setLabel('Username:')
 ->setOptions(array('size' => '16'));

Q:	 What is a CSRF attack, and how do I protect against it?

A:	 Typically, when a user visits a protected Web site and validates his/her access credentials,
a user session is generated and the access credentials are revalidated from the session data
store on each request. A CSRF attack involves hijacking a validated user session and using
the implicit trust relationship that already exists between the user and the host application
to invisibly transmit unauthorized requests through input sources such as Web forms. By
generating a unique hash value for each Web form and validating this value when the form
is submitted, a developer is able to make it harder to perform this type of attack. Using a
hash value also provides (limited) protection from automated spam mailers (“spambots”),
and is more user-friendly than a CAPTCHA.

Ask the Expert

ch03.indd 64 6/18/10 4:14:43 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 65

 // create password input
 $pass = new Zend_Form_Element_Password('password');
 $pass->setLabel('Password:')
 ->setOptions(array('size' => '16'));

 // create captcha
 $captcha = new Zend_Form_Element_Captcha('captcha', array(
 'captcha' => array(
 'captcha' => 'Figlet',
 'wordLen' => 5,
 'timeout' => 300,
)
));
 $captcha->setLabel('Verification:');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($pass)
 ->addElement($captcha)
 ->addElement($submit);
 }
}

Figure 3-10 illustrates what the result might look like.

Note
A number of predefined CAPTCHA adapters are included with the Zend Framework,
including adapters for simple string-transposition operations (“Dumb”) and for visual
CAPTCHAS (“Image” and “Figlet”). You’ll see another example of an image CAPTCHA
a little further along in this chapter.

Setting Required and Default Values
You can mark a specific input element as required by calling its setRequired() method
with a true argument. Here’s an example:

<?php
class Form_Example extends Zend_Form
{

 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

ch03.indd 65 6/18/10 4:14:43 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 66	 Zend Framework: A Beginner’s Guide

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true);

Figure 3-10  A form containing a CAPTCHA

Q:	 What is a CAPTCHA?

A:	 A CAPTCHA, or Completely Automated Public Turing test to tell Computers and Humans
Apart, is a common challenge-response test used to identify whether the entity at the
other end of a connection is a human being or a computer. On the Web, the typical form
of a CAPTCHA is a distorted sequence of random alphanumeric characters, operating
on the principle that a computer would be unable to see past the distortion, but a human,
with greater powers of perception, would be able to correctly identify the sequence.
Such CAPTCHAs are typically attached to input forms on the Web (for example, user
registration forms), and they must be solved correctly before the input will be processed by
the host application. CAPTCHAs need not always be visual; audio CAPTCHAs are also
possible, and are most appropriate for visually handicapped users.

Ask the Expert

ch03.indd 66 6/18/10 4:14:43 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 67

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true);

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit',
 array('class' => 'submit')
);
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

When you use the setRequired() method on an input field, Zend_Form automatically
attaches a NotEmpty validator to that field. As a result, if the field is empty when the form is
submitted, an error message will appear. Figure 3-11 illustrates the result.

Tip
You can tell Zend_Form not to attach a NotEmpty validator to required elements by
explicitly calling the element’s setAutoInsertNotEmptyValidator() method with
a false argument. Validators are discussed in detail in the next section.

You can attach default values to input elements by calling the element object’s
setValue() method with the default value or by calling the form object’s setDefaults()
method with an array of default values. For text input fields, this can be any string value; for

Figure 3-11  The result of submitting a form without required input values

ch03.indd 67 6/18/10 4:14:44 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 68	 Zend Framework: A Beginner’s Guide

radio buttons and selection lists, it should be the index of the selected item. Here’s an example,
which demonstrates both of these methods:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->setValue('Enter your name');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->setValue('Enter your email address');

 // create radio buttons for type
 $type = new Zend_Form_Element_Radio('type');
 $type->setLabel('Membership type:')
 ->setMultiOptions(array(
 'silver' => 'Silver',
 'gold' => 'Gold',
 'platinum' => 'Platinum'
));

 // create checkbox for newsletter subscription
 $subscribe = new Zend_Form_Element_Checkbox('subscribe');
 $subscribe->setLabel('Subscribe to newsletter')
 ->setCheckedValue('yes')
 ->setUncheckedValue('no');

 // create selection list for source country
 $from = new Zend_Form_Element_Select('from');
 $from->setLabel('Country:')
 ->setMultiOptions(array(
 'IN' => 'India',
 'US' => 'United States',
 'DE' => 'Germany',
 'FR' => 'France',

ch03.indd 68 6/18/10 4:14:44 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 69

 'UK' => 'United Kingdom'
));

 // create submit button
 $submit = new Zend_Form_Element_Submit(
 'submit', array('class' => 'submit'));
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($type)
 ->addElement($from)
 ->addElement($subscribe)
 ->addElement($submit);

 // set default values
 $this->setDefaults(array(
 'type' => 'platinum',
 'subscribe' => 'yes',
 'from' => 'FR',
));
 }
}

Figure 3-12 illustrates what the result looks like.

Figure 3-12  A form rendered with default values

ch03.indd 69 6/18/10 4:14:44 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 70	 Zend Framework: A Beginner’s Guide

Filtering and Validating Form Input
As a Web application developer, there’s one unhappy fact that you’ll have to learn to live with:
There are always going to be people out there who get their chuckles from finding loopholes
in your code and exploiting these loopholes for malicious purposes. Therefore, one of the most
important things a developer can do to secure an application is to properly filter and validate
all the input passing through it.

The following sections discuss the filtering and validation tools available in the Zend
Framework, together with examples of how they can be used with Web forms to make your
application more secure.

Using Input Filters
Most of the time, input exploits consist of sending your application cleverly disguised values
that “trick” it into doing something it really, really shouldn’t. A common example of this type
of exploit is the SQL injection attack, wherein an attacker remotely manipulates your database
with an SQL query embedded inside form input. Therefore, one of the most important things a
developer must do before using any input supplied by the user is to “sanitize” it by removing
any special characters or symbols from it.

PHP comes with various functions to assist developers in the task of sanitizing input. For
example, the addslashes() function escapes special characters (like quotes and backslashes)
in input so that it can be safely entered into a database, while the strip_tags() function
strips all the HTML and PHP tags out of a string, returning only the ASCII content. There’s also
the htmlentities() function, which is commonly used to replace special characters like ",
&, <, and > with their corresponding HTML entity values, rendering them harmless.

Here’s an example of sanitizing form input with the htmlentities() function:

<?php
// define array of sanitized data
$sanitized = array();

// strip tags from POST input
if (isset($_POST['name']) && !empty($_POST['name'])) {
 $sanitized['name'] = htmlentities($_POST['name']);
}

// processing code //
?>

When it comes to filtering user input, the Zend Framework does a lot of the heavy lifting for
you. The Zend_Filter component provides a comprehensive set of input filters, which can either
be attached to form elements with the addFilter() method or used on a stand-alone basis for
ad-hoc input sanitization. Here’s an example of using the HTMLEntities filter on a text input field:

<?php
class Form_Example extends Zend_Form

ch03.indd 70 6/18/10 4:14:44 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 71

{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for user name
 // filter special characters
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Username:')
 ->setOptions(array('size' => '16'))
 ->addFilter('HtmlEntities');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($submit);
 }
}

You can also pass the addFilter() method an instance of the Zend_Filter_* class, as
shown in the following equivalent script:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for user name
 // filter special characters
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Username:')
 ->setOptions(array('size' => '16'))
 ->addFilter(new Zend_Filter_HtmlEntities());

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form

ch03.indd 71 6/18/10 4:14:45 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 72	 Zend Framework: A Beginner’s Guide

 $this->addElement($name)
 ->addElement($submit);
 }
}

Some filters support additional options, which can be passed to the addFilter() method
as an array or, if you’re using a class instance, as arguments to the object constructor. Consider
the next example, which uses the Alpha filter to strip out all non-alphabetic characters from
user input. An additional option, passed to the addFilter() method as a second argument,
retains whitespace (which is stripped by default).

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 // allow alphabetic characters and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addFilter('Alpha', array('allowWhiteSpace' => true))
 ->addFilter('HtmlEntities');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($submit);
 }
}

Table 3-2 gives a list of some important filters that ship with the Zend Framework,
together with a brief description of each. You’ll see many of these filters in use in this and
subsequent chapters.

Tip
You can attach multiple filters to a form element in one of two ways: by calling the
addFilter() method multiple times, with a different filter name on each invocation, or by
using the addFilters() method and passing it an array containing a list of filter names.

ch03.indd 72 6/18/10 4:14:45 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 73

Using Input Validators
Filtering input is only part of the puzzle. It’s also extremely important to validate user
input to ensure that it is in the correct format before using it for calculations or saving it
to the application’s data store. Improperly validated application input can not only cause
significant data corruption and loss, but it can also be embarrassing in the extreme to the proud
application developer.

In order to illustrate the importance of input validation, consider a simple example: an
online mortgage calculator that allows a user to enter the desired loan amount, finance term,
and interest rate. Now, let’s assume that the application doesn’t include any input validation.
And let’s also suppose that the user decides to enter the string 'ten', instead of the number
10, into the term field.

Filter Name Description

Alnum Removes non-alphanumeric characters from argument

Alpha Removes non-alphabetic characters from argument

Digits Removes non-numeric characters from argument

Int Returns integer value of argument

Dir Returns directory name component of argument

BaseName Returns filename component of argument

RealPath Returns absolute filesystem path for argument

StringToLower Converts argument to a lowercase string

StringToUpper Converts argument to an uppercase string

StringTrim Removes leading and trailing whitespace from argument

StripNewlines Removes line break characters from argument

HtmlEntities Converts special characters in argument to their HTML entity
equivalents

StripTags Removes HTML and PHP code from argument

Encrypt Returns encrypted version of argument

Decrypt Returns decrypted version of argument

NormalizedToLocalized Returns argument in standard form

LocalizedToNormalized Returns argument in localized form

Callback Calls user-defined filter with argument

LowerCase Converts contents of uploaded file to lowercase

UpperCase Converts contents of uploaded file to uppercase

Rename Renames uploaded file

Table 3-2  Input Filters Included with the Zend Framework

ch03.indd 73 6/18/10 4:14:45 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 74	 Zend Framework: A Beginner’s Guide

It shouldn’t be too hard to guess what happens next. The application will perform a few
internal calculations that will end in it attempt to divide the total amount payable by the specified
term. Since the term in this case is a string, PHP will cast it to the number 0, producing a division-
by-zero error. The resulting slew of ugly error messages is likely to leave even the most blasé
developer red-faced; more importantly, if the invalid input is also saved to the database as is, the
error will recur every time the calculation is repeated on the record. Multiply this by even a few
hundred records containing similar errors, scattered throughout the database, and you’ll quickly
see how the lack of appropriate input validation can significantly damage an application.

PHP comes with various functions to assist developers in the task of validating input. For
example, the is_numeric() function tests if a value is numeric, while the ctype_alpha()
and ctype_alnum() functions can be used to test for alphabetic and alphanumeric strings.
There’s also the filter_var() function, while can be used to test the validity of email
addresses and URLs, and the preg_match() function, which allows for pattern validation
using regular expressions. Here’s an example of some of these functions in action:

<?php
// define array of valid data
$valid = array();

// check if age is a number
if (is_numeric(trim($_POST['age']))) {
 $valid['age'] = trim($_POST['age']);
} else {
 die ('ERROR: Age is not a number.');
}

// check for valid first name
if (isset($_POST['firstname']) && ctype_alpha($_POST['firstname'])) {
 $valid['firstname'] = trim($_POST['firstname']);
} else {
 die ('ERROR: First name not present or invalid.');
}

// check for valid email address
if (isset($_POST['email'])
 && filter_var($_POST['email'], FILTER_VALIDATE_EMAIL)) {
 $valid['email'] = trim($_POST['email']);
} else {
 die ('ERROR: Email address not present or invalid.');
}

// processing code here //
?>

As with filters, the Zend Framework ships with a large number of predefined input
validators, collectively referred to as Zend_Validate, which can either be attached to form
elements with the addValidator() method or used ad hoc. Validator-specific options can

ch03.indd 74 6/18/10 4:14:46 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 75

be passed as the third argument to the addFilter() method as an associative array of key-
value pairs, as shown in the following example:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for age
 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('Int')
 ->addValidator('Between', false, array(1,100));

 // create text input for name
 // should contain only alphabetic characters and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator('Alpha', false, array('allowWhiteSpace' =>
true));

 // create text input for email address
 // should contain a valid email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator('EmailAddress');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($age)
 ->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

ch03.indd 75 6/18/10 4:14:46 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 76	 Zend Framework: A Beginner’s Guide

As with filters, validators can also be specified as instances of the corresponding Zend_
Validate_* class, with validator options passed as arguments to the object constructor. The next
example, which is equivalent to the previous one, illustrates this approach:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for age
 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator(new Zend_Validate_Int())
 ->addValidator(new Zend_Validate_Between(1,100));

 // create text input for name
 // should contain only alphabetic characters and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator(new Zend_Validate_Alpha(true));

 // create text input for email address
 // should contain a valid email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addValidator(new Zend_Validate_EmailAddress());

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($age)
 ->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

ch03.indd 76 6/18/10 4:14:46 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 77

Figure 3-13 illustrates the result of attempting to submit invalid values through such
a form.

Table 3-3 provides a list of some important validators available in the Zend Framework,
together with a brief description of each. You’ll see many of these validators in use further
along in this chapter, as well as in subsequent chapters.

Figure 3-13  The result of submitting a form with invalid input values

Validator Name Description

NotEmpty Returns false if argument is empty

StringLength Returns false if argument does not conform to specified minimum/maximum
length

InArray Returns false if argument is not in specified array

Identical Returns false if argument does not match specified value

Alnum Returns false if argument does not contain only alphanumeric characters

Alpha Returns false if argument does not contain only alphabetic characters

Int Returns false if argument is not an integer

Float Returns false if argument is not a floating-point number

Hex Returns false if argument is not a hexadecimal value

Digits Returns false if argument does not contain only numbers

Between Returns false if argument is not in a specified numeric range

Table 3-3  Input Validators Included with the Zend Framework

ch03.indd 77 6/18/10 4:14:47 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 78	 Zend Framework: A Beginner’s Guide

Validator Name Description

GreaterThan Returns false if argument is not greater than a specified value

LessThan Returns false if argument is not less than a specified value

Date Returns false if argument is not a valid date

EmailAddress Returns false if argument does not conform to standard email address conventions

Hostname Returns false if argument does not conform to standard host name conventions

Ip Returns false if argument does not conform to standard IP address conventions

Regex Returns false if argument does not conform to specified regular expression
pattern

Barcode Returns false if argument is not a valid bar code

Ccnum Returns false if argument does not conform to the Luhn algorithm for standard
credit card number conventions

Iban Returns false if argument is not a valid IBAN number

Exists Returns false if argument is not a valid file

Count Returns false if number of uploaded files is outside the range specified in
argument

Size Returns false if uploaded file size is outside the range specified in argument

FilesSize Returns false if uploaded file size total is outside the range specified in argument

Extension Returns false if uploaded file extension does not match those specified in argument

MimeType Returns false if uploaded file MIME type does not match those specified in
argument

IsCompressed Returns false if uploaded file is not a compressed archive file

IsImage Returns false if uploaded file is not an image file

ImageSize Returns false if uploaded image dimensions are outside the range specified in
argument

Crc32, Md5, Sha1,
Hash

Returns false if uploaded file content does not match the hash value specified in
argument (supports crc32, md5, and sha1 hash algorithms)

ExcludeExtension Returns false if uploaded file extension matches those specified in argument

ExcludeMimeType Returns false if uploaded file MIME type matches those specified in argument

WordCount Returns false if number of words in uploaded file is outside the range specified
in argument

Db_RecordExists Returns false if a particular record does not exist in the database and table
specified in argument

Db_NoRecordExists Returns false if a particular record exists in the database and table specified in
argument

Table 3-3  Input Validators Included with the Zend Framework (continued )

ch03.indd 78 6/18/10 4:14:47 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 79

Using Validator and Filter Chains
One of the most interesting things about the Zend_Filter and Zend_Validate components
is their support for chaining or stacking. Essentially, this means that it is possible to attach
multiple filters and validators to a single input element, and have them automatically run, in
sequence, once the form is submitted. The following example illustrates this by setting up
a chain of four filters:

<?php
 // create text input for name
 // filter tags, entities and whitespace
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('First name:')
 ->setOptions(array('size' => '16'))
 ->setRequired(true)
 ->addFilter('StripTags')
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim')
 ->addFilter('StringToLower');
?>

In this example, the first filter strips HTML and PHP tags from the input, the second encodes
entities, the third trims leading and trailing whitespace, and the fourth transforms the result to
lowercase. These filters are executed on the input value in their order of appearance in the chain.

Validator chains work in a similar manner and come with an additional property. A
validator chain can be configured such that a failure in any one validator terminates the
entire chain with an error message. This behavior is controlled by the second argument to the
addValidator() method which, when set to true, breaks the chain if there is a failure in the
corresponding validator. Consider the next example, which illustrates this:

<?php
 // create text input for age

Q:	 I’m already validating form input using JavaScript. Why do I also need to validate it
using PHP?

A:	 It’s common practice to use client-side scripting languages like JavaScript or VBScript for
client-side input validation. However, this type of client-side validation is not foolproof—if
a user turns off JavaScript in the client, all your client-side code will become nonfunctional.
That’s why it’s a good idea to couple client-side validation (which is faster) with server-side
validation (which is more secure).

Ask the Expert

ch03.indd 79 6/18/10 4:14:47 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 80	 Zend Framework: A Beginner’s Guide

 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Int', true)
 ->addValidator('Between', true, array(1,100));
?>

In this example, a failure in any one of the validators breaks the chain, and the remaining
validators will not be processed. So, for example, if the input is not an integer value, the
validation chain will terminate with the error message generated by the Int validator, and the
Between validator will not be executed. Contrast this with the next listing:

<?php
 // create text input for age
 // should contain only integer values between 1 and 100
 $age = new Zend_Form_Element_Text('age');
 $age->setLabel('Age:')
 ->setOptions(array('size' => '4'))
 ->setRequired(true)
 ->addValidator('NotEmpty', false)
 ->addValidator('Int', false)
 ->addValidator('Between', false, array(1,100));
?>

In this version, even if one of the validators fails, the remaining validators will still be run,
and error messages generated by any subsequent failures will be added to the message stack.
This is illustrated in Figures 3-14 and 3-15, which compare and contrast the difference in
behavior of these two listings.

Figure 3-14  A validator chain, broken on the first failure

ch03.indd 80 6/18/10 4:14:48 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 81

Tip
In case the predefined filters and validators that ship with the Zend Framework don’t
meet your needs, remember that you can always write your own. The Zend Framework
manual has examples of how to do this.

Retrieving and Processing Form Input
Within a controller script, you can use a number of Zend_Form methods to retrieve and
process form input after submission:

The ●● isValid() method checks if the submitted input is valid. This method accepts an
array of input values and returns Boolean true or false depending on whether these values
match the validation rules set up with the various addValidator() calls.

If the input is invalid, the ●● getMessages() method returns a list of the error messages
generated during the validation process. This list can be processed and displayed when the
form is re-rendered to give the user a hint about what went wrong.

If the input is valid, the ●● getValues() method can be used to retrieve the valid, filtered
values for further processing. Input values are returned as elements of an associative
array, where the array key represents the element name and the array value represents the
corresponding input value. There’s also a getUnfilteredValues() method, which
returns the original, unfiltered input as entered by the user.

Tip
The isValid() method automatically verifies CAPTCHA and hash values, with no
additional programming required on your part.

Figure 3-15  A validator chain, processed without any break

ch03.indd 81 6/18/10 4:14:48 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 82	 Zend Framework: A Beginner’s Guide

The next listing illustrates how these methods are typically used in the context of
a controller script:

<?php
class ExampleController extends Zend_Controller_Action
{
 public function formAction()
 {
 $form = new Form_Example;
 $this->view->form = $form;

 // check the request
 // run the validators
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 // valid data: get the filtered and valid values
 // do something, save to database or write to file
 // display a success view
 $values = $form->getValues();
 $this->_redirect('/form/success');
 } else {
 // invalid data: get the error message array
 // for manual processing (if needed)
 // redisplay the form with errors
 $this->view->messages = $form->getMessages();
 }
 }
 }
}
?>

	 Creating a Contact Form
With all this background information at hand, let’s now look at how it plays out in the context
of a practical application. The following section applies everything you’ve learned so far to
create an email inquiry form for the SQUARE application. This form will invite the user to
enter a message and, on submission, will format the input into an email message and send it to
the site administrators for follow-up.

Defining the Form
To begin, let’s consider the requirements of the input form. They aren’t very complicated—all
that’s really needed are three fields for the user to enter his or her name, email address, and
message. These values should be validated, particularly the email address, to ensure authenticity
and thereby make it possible for administrators to respond to email inquiries. To filter out
automated submissions and reduce the incidence of spam, it would also be nice to include a

Try This 3-1

ch03.indd 82 6/18/10 4:14:48 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 83

visual CAPTCHA—something that’s quite easy to do with Zend_Form, as illustrated earlier.
Here’s an example of what the resulting form definition would look like:

<?php
class Square_Form_Contact extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/contact/index')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('Alpha', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addValidator('EmailAddress', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringToLower')
 ->addFilter('StringTrim');

 // create text input for message body
 $message = new Zend_Form_Element_Textarea('message');
 $message->setLabel('Message:')
 ->setOptions(array('rows' => '8','cols' => '40'))
 ->setRequired(true)
 ->addValidator('NotEmpty', true)
 ->addFilter('HTMLEntities')
 ->addFilter('StringTrim');

 // create captcha
 $captcha = new Zend_Form_Element_Captcha('captcha', array(
 'captcha' => array(
 'captcha' => 'Image',

(continued)

ch03.indd 83 6/18/10 4:14:49 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 84	 Zend Framework: A Beginner’s Guide

 'wordLen' => 6,
 'timeout' => 300,
 'width' => 300,
 'height' => 100,
 'imgUrl' => '/captcha',
 'imgDir' => APPLICATION_PATH . '/../public/captcha',
 'font' => APPLICATION_PATH .
 '/../public/fonts/LiberationSansRegular.ttf',
)
));
 $captcha->setLabel('Verification code:');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Send Message')
 ->setOptions(array('class' => 'submit'));

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($message)
 ->addElement($captcha)
 ->addElement($submit);
 }
}

You should already be familiar with most of the preceding code. The form contains two
text input elements for the user’s name and email address, one text area for the message body,
and a CAPTCHA element for verification. Alpha and NotEmpty validators are attached to the
name and message body fields, while an EmailAddress validator is used to check the submitted
email address. All fields are filtered using the HTMLEntities validator, and the email address
is additionally converted to lowercase with the StringToLower validator.

The options passed to the Zend_Form_Element_Captcha instance are also worth looking
into. Unlike the example shown in an earlier section, this definition generates a more complex
CAPTCHA by dynamically overlaying a random sequence of characters on a distressed
background. This type of CAPTCHA is commonly used in Web forms to stymie automated bot
submissions, many of which include optical character recognition (OCR) algorithms that can
“read” characters overlaid on a clear background. The options passed to the object instance include
the dimensions of the CAPTCHA image, the disk location to store the generated CAPTCHA, the
number of characters in the CAPTCHA, and the font file to use for the text overlay.

Caution
If you’re using copyrighted fonts that cannot be redistributed, you should move the
$APP_DIR/public/fonts/ directory to a location outside the server document root, such
as $APP_DIR/application/fonts/, to ensure that the fonts are not publicly accessible
through a Web browser. If you’re doing this, remember to update the application code
to reflect the new path as well.

ch03.indd 84 6/18/10 4:14:49 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 85

You’ll notice that the previous example makes use of a custom font, and it stores generated
CAPTCHAs in a specified directory. Accordingly, also create the $APP_DIR/public/captcha/
and $APP_DIR/public/fonts/ directories and copy over the necessary assets to these locations.
You’ll find these assets in the code archive for this chapter, which can be downloaded from
this book’s companion Web site at http://www.zf-beginners-guide.com/.

Note
The font used for the CAPTCHA in this example is the Liberation Sans font, part of a
collection of fonts released to the community under the GNU General Public License by
RedHat Inc. in 2007. Users are free to use, modify, copy, and redistribute these fonts
under the terms of the GNU GPL.

Using a Custom Namespace
The definition in the previous section uses a custom namespace, “Square,” which is prefixed
to the class name. This is a recommended practice for any custom objects or libraries that you
may create for the application, as it helps avoid name collisions between your definitions and
others that may exist in the application space. An added benefit is that if you register your
custom namespace with the Zend Framework’s autoloader and then locate your definitions
correctly in the application directory structure, the Zend Framework will automatically find
and load them as needed at run time.

With this in mind, save the class definition from the preceding code to $APP_DIR/
library/Square/Form/Contact.php, and then add the following directive to the application
configuration file, at $APP_DIR/application/configs/application.ini, to register the “Square”
namespace with the autoloader:

autoloaderNamespaces[] = "Square_"

Caution
If your classes use an underscore to separate the namespace from the rest of the class
name, you must include this underscore when registering the namespace with the Zend
Framework autoloader.

Defining a Custom Route
This is also a good time to add a custom route for the new form. While you’ve got the
application configuration file open in your text editor, add the following route definition to it:

resources.router.routes.contact.route = /contact
resources.router.routes.contact.defaults.module = default
resources.router.routes.contact.defaults.controller = contact
resources.router.routes.contact.defaults.action = index

(continued)

ch03.indd 85 6/18/10 4:14:49 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 86	 Zend Framework: A Beginner’s Guide

Based on the material discussed in Chapter 2, this should be quite familiar to you—it sets
up a route such that requests for the application URL /contact are handled by the “default”
module’s ContactController::indexAction.

Defining Controllers and Views
The next step is to define the aforesaid ContactController::indexAction.. By
convention, this controller should be located at $APP_DIR/application/modules/default/
controllers/ContactController.php, and should look something like this:

<?php
class ContactController extends Zend_Controller_Action
{

 public function init()
 {
 $this->view->doctype('XHTML1_STRICT');
 }

 public function indexAction()
 {
 $form = new Square_Form_Contact();
 $this->view->form = $form;
 if ($this->getRequest()->isPost()) {
 if ($form->isValid($this->getRequest()->getPost())) {
 $values = $form->getValues();
 $mail = new Zend_Mail();
 $mail->setBodyText($values['message']);
 $mail->setFrom($values['email'], $values['name']);
 $mail->addTo('info@square.example.com');
 $mail->setSubject('Contact form submission');
 $mail->send();
 $this->_helper->getHelper('FlashMessenger')
 ->addMessage('Thank you. Your message was successfully
sent.');
 $this->_redirect('/contact/success');
 }
 }
 }

 public function successAction()
 {
 if ($this->_helper->getHelper('FlashMessenger')->getMessages()) {
 $this->view->messages =
 $this->_helper->getHelper('FlashMessenger')->getMessages();
 } else {

ch03.indd 86 6/18/10 4:14:49 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 87

 $this->_redirect('/');
 }
 }
}

Most of the heavy lifting here is done by the indexAction() method, which creates an
object of the Square_Form_Contact class discussed earlier and attaches it to the view. When
the form is submitted, the object’s isValid() method is used to validate the input submitted
by the user. If the input is found to be valid, an instance of the Zend_Mail component is
created, and object methods are used to format the input into an email message and send it
to a specified email address. Once the message has been sent, control is transferred to the
successAction() method, which renders a success view.

That’s what happens if all goes well…but there’s many a slip ’twixt the cup and the
lip, so it’s useful to understand what happens if things go wrong. If the input is found to be
invalid, the isValid() method will return false and the form will be redisplayed, with error
messages indicating the source of the error(s). Zend_Form will also automatically populate
the form with the original input values to ensure that the user doesn’t need to re-enter all the
requested data. On the other hand, if the input is valid but an error occurs in the process of
email generation and transmission, Zend_Mail will throw a PHP exception, which will be
caught and handled by the application’s default error handler.

Note
In order for the Zend_Mail object’s send() method to work correctly, a mail delivery
agent (such as sendmail) must be available and correctly configured in your php.ini
configuration file. If this is not the case, message transmission will fail and the send()
method will throw an exception at the point of failure.

This controller also introduces a new tool, the FlashMessenger helper, which is a useful
little “helper” to simplify the display of status messages to the user. Messages can be added
to the FlashMessenger object via its addMessage() method; these messages are then stored
in the session until retrieved with a call to the getMessages() method, at which point
they are removed from the session. This makes the FlashMessenger a convenient place to
temporarily store messages between the time an operation ends and the time the subsequent
view completes rendering, and you’ll see it being used frequently throughout this book.

Caution
You’ll notice that the controller’s init() method sets the view’s document type to XHTML
1.0 Strict. This is because, by default, Zend_Form doesn’t produce well-formed XHTML
markup. Setting the document type in this manner forces it to do so.

Obviously, you also need a couple of views, one for the input form and one for the
success message. Here’s the input view, which by convention should be located at $APP_DIR/
application/modules/default/views/scripts/contact/index.phtml:

<h2>Contact</h2>
<?php echo $this->form; ?>

(continued)

ch03.indd 87 6/18/10 4:14:50 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 88	 Zend Framework: A Beginner’s Guide

And here’s the success view, which by convention should be stored at $APP_DIR/
application/modules/default/views/scripts/contact/success.phtml:

<h2>Success</h2>
<?php echo implode($this->messages); ?>

Updating the Master Layout
All that’s left now is to update the navigation links in the application’s main menu to reflect
the new inquiry form using the url()helper method. To do this, update the master layout, at
$APP_DIR/application/layouts/master.phtml, with the changes highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8"/>
 <base href="/" />
 <link rel="stylesheet" type="text/css" href="/css/master.css" />
 </head>
 <body>
 <div id="header">
 <div id="logo">

 </div>

 <div id="menu">
 <a href="<?php echo $this->url(array(), 'home'); ?>">HOME
 <a href="<?php echo $this->url(array('page' => 'services'),
 'static-content'); ?>">SERVICES
 <a href="<?php echo $this->url(array(), 'contact');
?>">CONTACT
 </div>
 </div>

 <div id="content">
 <?php echo $this->layout()->content ?>
 </div>

 <div id="footer">
 <p>Created with
 Zend Framework. Licensed under
 Creative Commons
 .</p>
 </div>
 </body>
</html>

ch03.indd 88 6/18/10 4:14:50 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 89

If you now try visiting the URL http://square.localhost/contact through your Web
browser, you should see a form like the one in Figure 3-16.

Enter values into the form fields and submit it; if all goes well, you should see a success
message like the one in Figure 3-17.

(continued)

Figure 3-16  The SQUARE contact form

Figure 3-17  �The result of successfully submitting the SQUARE contact form

ch03.indd 89 6/18/10 4:14:50 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 90	 Zend Framework: A Beginner’s Guide

You can also try submitting the form with invalid values. The built-in validators will catch
your invalid input and redisplay the form with error messages, as shown in Figure 3-18.

Note
Remember to update the recipient email address in the
ContactController::indexAction to reflect your own email address, or else the
email messages generated by the Zend_Mail component will never be received by you.

Customizing Form Appearance
You should now have a reasonably good idea about what goes into building a form with the
Zend Framework, as well as some insight into the tools available to help you secure your
application against invalid and malicious input. This section takes a quick look at some of the
tools available to help you improve the appearance and behavior of your forms, with a view to
making them clearer and more informative.

Figure 3-18  The result of submitting the SQUARE contact form with invalid input values

ch03.indd 90 6/18/10 4:14:51 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 91

Using Custom Error Messages
Each input validator comes with a set of default error messages appropriate to the type of data
being validated. More often than not, these default error messages provide enough information
for users to locate and correct the errors in their input. However, cases may arise when these
default messages need to be modified to be more descriptive and user-friendly.

This is not very difficult to do, because each validator can be configured to display
custom error messages via the 'messages' key of the options array passed to the
addValidator() method. Consider the following example, which illustrates this:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addValidator('Alpha', false, array(
 'messages' => array(
 Zend_Validate_Alpha::INVALID
 => "ERROR: Invalid name",
 Zend_Validate_Alpha::NOT_ALPHA
 => "ERROR: Name cannot contain non-alpha characters",
 Zend_Validate_Alpha::STRING_EMPTY
 => "ERROR: Name cannot be empty"
)
))
 ->addFilter('StringTrim');
 $validator = $name->getValidator('Alpha');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('EmailAddress', true, array(
 'messages' => array(
 Zend_Validate_EmailAddress::INVALID
 => "ERROR: Invalid email address",
 Zend_Validate_EmailAddress::INVALID_FORMAT
 => "ERROR: Invalid email address",

ch03.indd 91 6/18/10 4:14:51 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 92	 Zend Framework: A Beginner’s Guide

 Zend_Validate_EmailAddress::INVALID_HOSTNAME
 => "ERROR: Invalid hostname format",
 Zend_Validate_EmailAddress::INVALID_LOCAL_PART
 => "ERROR: Invalid username format",
 Zend_Validate_EmailAddress::LENGTH_EXCEEDED
 => "ERROR: Email address too long"
)
))
 ->addFilter('StringTrim');

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($submit);
 }
}

In this example, the default error messages for each invalid case are overridden
by the custom messages specified in the 'messages' key of the array passed to the
addValidator() method. The constants on the left side of the message array can be
obtained by inspecting the corresponding validator’s source code. These new messages
will then be generated, added to the error stack, and displayed in the form whenever the
corresponding element fails validation. An example of the output is shown in Figure 3-19.

Tip
You can also pass custom error messages to a validator via its setMessages() method.

Figure 3-19  A form with custom error messages

ch03.indd 92 6/18/10 4:14:51 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 93

Using Display Groups
It’s usually a good idea to group together form elements that have some tenuous or
not-so-tenuous connection to each other. This is a more usable and readable approach than
a collection of unordered elements clumped together without any clear categorization. With
Zend_Form, this is accomplished through the use of display groups.

Display groups are added to a form with the form object’s addDisplayGroup()
method, which accepts two arguments: an array containing the names of the elements in the
group, and a name for the group. The elements in question should have already been added
to the form with the addElement() method. The setLegend() method can then be used
to specify a name for the display group. At render time, these display groups and legends are
represented by the <fieldset> and <legend> elements, respectively.

Here’s an illustrative example:

<?php
class Form_Example extends Zend_Form
{
 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post');

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->addFilter('StringTrim');

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->addValidator('EmailAddress', true)
 ->addFilter('StringTrim');

 // create text input for tel number
 $tel = new Zend_Form_Element_Text('tel');
 $tel->setLabel('Telephone number:');
 $tel->setOptions(array('size' => '50'))
 ->setRequired(true);

 // create submit button
 $submit = new Zend_Form_Element_Submit('submit');
 $submit->setLabel('Sign Up');

ch03.indd 93 6/18/10 4:14:51 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 94	 Zend Framework: A Beginner’s Guide

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($tel);

 // add display group
 $this->addDisplayGroup(
 array('name', 'email', 'tel', 'address'),
 'contact'
);
 $this->getDisplayGroup('contact')
 ->setLegend('Contact Information');

 $this->addElement($submit);
 }
}

Figure 3-20 illustrates what the result looks like.

Using Decorators
When rendering a form, Zend_Form automatically wraps each form element in a set of HTML
code blocks that control the location and appearance of the element. These blocks of HTML
markup are referred to as decorators and, in addition to providing a ready hook for CSS-based
manipulation, they can be customized on a per-element basis to radically alter how form
elements are rendered.

Figure 3-20  A form with display groups

ch03.indd 94 6/18/10 4:14:52 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 95

Like filters and validators, the Zend Framework ships with a number of default decorators.
Table 3-4 lists the ones you’re most likely to encounter.

The default Zend_Form decorators use the following markup:

Form labels are wrapped in ●● <dt>...</dt> elements.

Input fields are wrapped in ●● <dd>...</dd> elements.

Validation errors are rendered as list items and wrapped in ●● ... elements.

Figure 3-21 illustrates the HTML source code of one such form, while Figure 3-22
illustrates the rendered result.

Figure 3-21  The source code of a form using default decorators

Table 3-4  Commonly Used Form Decorators

Decorator Name Description

Form Controls the markup around the form

FormElements Controls the markup around form fields

HtmlTag Controls the markup around form fields

ViewHelper Controls the view helper

Errors Controls the markup around validation errors (per field)

FormErrors Controls the markup around validation errors (summary)

Description Controls the markup around field descriptions

Label Controls the markup around field labels

Fieldset Controls the markup around fieldsets

ch03.indd 95 6/18/10 4:14:52 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 96	 Zend Framework: A Beginner’s Guide

Often, this arrangement is not suitable for your application’s user interface. To alter it, use
one of the following methods:

The ●● addDecorators() method accepts an array of decorator names and adds
the corresponding decorators to the element. If you add a decorator that already
exists, the decorator’s settings will be overwritten with the values specified in the
addDecorators() method.

The ●● clearDecorators() method removes all existing decorators for an element.

The ●● setDecorators() method accepts an array of decorator names, removes all
existing decorators for an element, and attaches the new set of decorators to it.

Tip
To disable the default decorators for a particular form or form element, add a
'disableLoadDefaultDecorators' key to that form or form element’s options array.
Note that if you’re disabling the default decorators, you should still add back the
ViewHelper decorator with the addDecorators() or setDecorators() method, as
this decorator produces the basic markup for the form and its elements.

To illustrate how these decorators can be used, consider the following example:

<?php
class Form_Example extends Zend_Form
{
 public $formDecorators = array(
 array('FormElements'),

Figure 3-22  The rendered version of a form in Figure 3-21

ch03.indd 96 6/18/10 4:14:53 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 97

 array('Form'),
);

 public $elementDecorators = array(
 array('ViewHelper'),
 array('Label'),
 array('Errors'),
);

 public $buttonDecorators = array(
 array('ViewHelper'),
 array('HtmlTag', array('tag' => 'p'))
);

 public function init()
 {
 // initialize form
 $this->setAction('/sandbox/example/form')
 ->setMethod('post')
 ->setDecorators($this->formDecorators);

 // create text input for name
 $name = new Zend_Form_Element_Text('name');
 $name->setLabel('Name:')
 ->setOptions(array('size' => '35'))
 ->setRequired(true)
 ->setDecorators($this->elementDecorators);

 // create text input for email address
 $email = new Zend_Form_Element_Text('email');
 $email->setLabel('Email address:');
 $email->setOptions(array('size' => '50'))
 ->setRequired(true)
 ->setDecorators($this->elementDecorators);

 // create checkbox for newsletter subscription
 $subscribe = new Zend_Form_Element_Checkbox('subscribe');
 $subscribe->setLabel('Subscribe to newsletter:')
 ->setCheckedValue('yes')
 ->setUncheckedValue('no')
 ->setDecorators($this->elementDecorators);

 // create submit button
 $submit = new Zend_Form_Element_Submit(
 'submit', array('class' => 'submit'));
 $submit->setLabel('Sign Up')
 ->setDecorators($this->buttonDecorators);

ch03.indd 97 6/18/10 4:14:53 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 98	 Zend Framework: A Beginner’s Guide

 // attach elements to form
 $this->addElement($name)
 ->addElement($email)
 ->addElement($subscribe)
 ->addElement($submit);
 }
}

This listing resets the default decorators with the setDecorators() method, removing
the <dt>...</dt> and <dd>...</dd> elements around labels and input fields and
instead adjusting the appearance of these elements with CSS, which offers more precise control.
Consider Figure 3-23, which illustrates the revised source code, and Figure 3-24, which
illustrates the rendered result.

As this example illustrates, decorators provide a solution to the problem of controlling
form markup such that it conforms to the rest of your application’s interface. And in case you
find that the default decorators don’t offer enough control for you, remember that you can
always define your own form markup by creating a custom decorator class (simply extend
the Zend_Form_Decorator_Abstract abstract class) and using that instead. You’ll find links to
articles on this topic at the end of the chapter.

Figure 3-23  The source code of a form using custom decorators

ch03.indd 98 6/18/10 4:14:53 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3 BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	 Chapter 3:  Working with Forms	 99

Note
Decorators are an extensive topic in themselves, and it isn’t possible to cover them in
exhaustive detail in this book. The material presented in the preceding section should be
enough to get you started and to help you understand the relatively simple decorators
used in this book. For more in-depth study, refer to the links at the end of this chapter.

Summary
This chapter focused on forms: creating them, validating them, and processing them. It
introduced you to three of the most important components in the Zend Framework—
Zend_Form, Zend_Validate, and Zend_Filter—and showed you how they can be used to
securely request and handle user input. It then applied this knowledge to the SQUARE example
application, guiding you through the process of registering a new namespace for custom
objects, creating an email inquiry form, and transmitting the input received through this form
as an email message using the Zend_Mail component. Finally, it took a quick look at some of
the tools available to help you control the appearance of your forms, including display groups,
decorators, and custom error messages; you’ll see these tools in use throughout this book.

To learn more about the topics discussed in this chapter, consider visiting the following
links:

Wikipedia’s discussion of CSRF and XSS attacks, at ●●

http://en.wikipedia.org/wiki/Cross-site_request_forgery and
http://en.wikipedia.org/wiki/Cross-site_scripting

Wikipedia’s discussion of CAPTCHAs, at ●●

http://en.wikipedia.org/wiki/Captcha

Figure 3-24  The rendered version of the form in Figure 3-23

ch03.indd 99 6/18/10 4:14:54 PM

BeginNew-Tight / Zend Framework: A Beginner’s Guide / Vikram Vaswani / 163939-X / Chapter 3

	100	 Zend Framework: A Beginner’s Guide

Wikipedia’s discussion of fluent interfaces, at ●●

http://en.wikipedia.org/wiki/Fluent_interface

The Zend Framework autoloader, at ●●

http://framework.zend.com/manual/en/zend.loader.autoloader.html

The Zend_Form component, at ●●

http://framework.zend.com/manual/en/zend.form.html

The Zend_Filter component, at ●●

http://framework.zend.com/manual/en/zend.filter.html

The Zend_Validate component, at ●●

http://framework.zend.com/manual/en/zend.validate.html

The Zend_Mail component, at ●●

http://framework.zend.com/manual/en/zend.mail.html

A discussion of creating custom decorators (Matthew Weier O’Phinney), at ●●

http://weierophinney.net/matthew/archives/213-From-the-inside-out-How-to-layer-
decorators.html

ch03.indd 100 6/18/10 4:14:54 PM

