
D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

1

CHAPTER

1
Working with Strings

IN THIS CHAPTER:
 1.1 Controlling String Case
 1.2 Checking for Empty String Values
 1.3 Removing Characters from the

Ends of a String
 1.4 Removing Whitespace from Strings
 1.5 Reversing Strings
 1.6 Repeating Strings
 1.7 Truncating Strings
 1.8 Converting Between ASCII Characters

and Codes
 1.9 Splitting Strings into Smaller Chunks
1.10 Comparing Strings for Similarity
1.11 Parsing Comma-Separated Lists
1.12 Parsing URLs

1.13 Counting Words in a String
1.14 Spell-Checking Words in a String
1.15 Identifying Duplicate Words in a String
1.16 Searching Strings
1.17 Counting Matches in a String
1.18 Replacing Patterns in a String
1.19 Extracting Substrings
1.20 Extracting Sentences from a Paragraph
1.21 Generating String Checksums
1.22 Encrypting Strings (One-Way Encryption)
1.23 Encrypting Strings (Two-Way Encryption)
1.24 Generating Pronounceable Passwords
1.25 Generating Unpronounceable Passwords

ch01.indd 1 5/3/07 10:30:08 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 2 P H P P r o g r a m m i n g S o l u t i o n s

If you’re like most novice PHP developers, you probably have only a passing
acquaintance with PHP’s string functions. Sure, you know how to print output
to a Web page, and you can probably split strings apart and glue them back

together again. But there’s a lot more to PHP’s string toolkit than this: PHP has more
than 175 string manipulation functions, and new ones are added on a regular basis.
Ever wondered what they were all for?

If you have, you’re going to be thrilled with the listings in this chapter. In addition
to offering you a broad overview of PHP’s string manipulation capabilities, this
chapter discusses many other tasks commonly associated with strings in PHP—
removing unnecessary whitespace, finding and replacing string patterns, counting and
extracting string segments, identifying duplicate words, encrypting text and generating
string passwords. Along the way, you’ll find out a little more about those mysterious
string functions, and also learn a few tricks to help you write more efficient code.

1.1 Controlling String Case

Problem
You want to force a string value to upper- or lowercase.

Solution
Use the strtoupper() or strtolower() functions:

<?php

// define string

$rhyme = "And all the king's men couldn't put him together again";

// uppercase entire string

// result: "AND ALL THE KING'S MEN COULDN'T PUT HIM TOGETHER AGAIN"

$ucstr = strtoupper($rhyme);

echo $ucstr;

// lowercase entire string

// result: "and all the king's men couldn't put him together again"

$lcstr = strtolower($rhyme);

echo $lcstr;

?>

ch01.indd 2 5/3/07 10:30:08 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 3

Comments
When it comes to altering the case of a string, PHP makes it easy with four built-in
functions. Two of them are illustrated previously: the strtoupper() function
uppercases all the characters in a string, while the strtolower() function lowercases
all the characters in a string.

For more precise control, consider the ucfirst() function, which capitalizes the
first character of a string (good for sentences), and the ucwords() function, which
capitalizes the first character of every word in the string (good for titles). Here’s an
example:

<?php

// define string

$rhyme = "and all the king's men couldn't put him together again";

// uppercase first character of string

// result: "And all the king's men couldn't put him together again"

$ucfstr = ucfirst($rhyme);

echo $ucfstr;

// uppercase first character of every word of string

// result: "And All The King's Men Couldn't Put Him Together Again"

$ucwstr = ucwords($rhyme);

echo $ucwstr;

?>

1.2 Checking for Empty String Values

Problem
You want to check if a string value contains valid characters.

Solution
Use a combination of PHP’s isset() and trim() functions:

<?php

// define string

$str = " ";

ch01.indd 3 5/3/07 10:30:08 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 4 P H P P r o g r a m m i n g S o l u t i o n s

// check if string is empty

// result: "Empty"

echo (!isset($str) || trim($str) == "") ? "Empty" : "Not empty";

?>

Comments
You’ll use this often when working with form data, to see if a required form field
contains valid data or not. The basic technique is simple: use isset() to verify that
the string variable exists, then use the trim() function to trim whitespace from the
edges and equate it to an empty string. If the test returns true, it’s confirmation that
the string contains no value.

NOTE

It’s instructive to note that many developers use PHP’s empty() function for this purpose.
This isn’t usually a good idea, because empty() will return true even if the string passed to it
contains the number 0 (PHP treats 0 as Boolean false). So, in the following illustration, the
script will produce the result "Empty" even though the string variable actually contains data.

<?php

// define string

$str = "0";

// check if string is empty

// result: "Empty"

echo (empty($str)) ? "Empty" : "Not empty";

?>

1.3 Removing Characters from the Ends of a String

Problem
You want to remove the first/last n characters from a string.

Solution
Use the substr() function to slice off the required number of characters from the
beginning or end of the string:

<?php

// define string

$str = "serendipity";

ch01.indd 4 5/3/07 10:30:08 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 5

// remove first 6 characters

// result: "ipity"

$newStr = substr($str, 6);

echo $newStr;

// remove last 6 characters

// result: "seren"

$newStr = substr($str, 0, -6);

echo $newStr;

?>

Comments
The substr() function enables you to slice and dice strings into smaller strings. It
typically accepts three arguments, of which the last is optional: the string to act on,
the position to begin slicing at, and the number of characters to return from its start
position. A negative value for the third argument tells PHP to remove characters
from the end of the string.

1.4 Removing Whitespace from Strings

Problem
You want to remove all or some whitespace from a string, or compress multiple
spaces in a string.

Solution
Use a regular expression to find and replace multiple whitespace characters with a
single one:

<?php

// define string

$str = " this is a string with lots of emb e dd ↵
ed whitespace ";

// trim the whitespace at the ends of the string

// compress the whitespace in the middle of the string

// result: "this is a string with lots of emb e dd ed whitespace"

$newStr = ereg_replace('[[:space:]]+', ' ', trim($str));

echo $newStr;

?>

ch01.indd 5 5/3/07 10:30:08 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 6 P H P P r o g r a m m i n g S o l u t i o n s

Comments
There are two steps involved in performing this task. First, use the trim() function
to delete the unnecessary whitespace from the ends of the string. Next, use the ereg_
replace() function to find multiple whitespace characters in the string and replace
them with a single space. The end result is a string with all extra whitespace removed.

Alternatively, remove all the whitespace from a string, by altering the replacement
string used by ereg_replace(). The following variant illustrates this:

<?php

// define string

$str = " this is a string with lots of emb e dd ↵
ed whitespace ";

// remove all whitespace from the string

// result: "thisisastringwithlotsofembeddedwhitespace"

$newStr = ereg_replace('[[:space:]]+', '', trim($str));

echo $newStr;

?>

1.5 Reversing Strings

Problem
You want to reverse a string.

Solution
Use the strrev() function:

<?php

// define string

$cards = "Visa, MasterCard and American Express accepted";

// reverse string

// result: "detpecca sserpxE naciremA dna draCretsaM ,asiV"

$sdrac = strrev($cards);

echo $sdrac;

?>

ch01.indd 6 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 7

Comments
It’s extremely simple, this “give it a string, and strrev() gives it back to you in
reverse” task. But despite the fact that it’s nothing to write home about, strrev()
is often used to perform some advanced tasks. See the listing in “1.20: Extracting
Sentences from a Paragraph” for an example.

1.6 Repeating Strings

Problem
You want to repeat a string n times.

Solution
Use the str_repeat() function:

<?php

// define string

$laugh = "ha ";

// repeat string

// result: "ha ha ha ha ha ha ha ha ha ha "

$rlaugh = str_repeat($laugh, 10);

echo $rlaugh;

?>

Comments
PHP’s str_repeat() function is equivalent to Perl’s x operator: it repeats a string
a fixed number of times. The first argument to str_repeat() is the string to be
replicated; the second is the number of times to replicate it.

The str_repeat() function can come in quite handy if you need to print a
boundary line of special characters across your output page—for example, an
unbroken line of dashes or spaces. To see this in action, view the output of the
following code snippet in your browser—it displays a line of Ø characters across the
page by continuously printing the HTML character code Ø:

<?php

// define string

$special = "Ø";

ch01.indd 7 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 8 P H P P r o g r a m m i n g S o l u t i o n s

// repeat string

$rspecial = str_repeat($special, 62);

echo $rspecial;

?>

1.7 Truncating Strings

Problem
You want to truncate a long string to a particular length, and replace the truncated
characters with a custom placeholder—for example, with ellipses.

Solution
Use the substr() function to truncate the string to a specified length, and append
the custom placeholder to the truncated string:

<?php

function truncateString($str, $maxChars=40, $holder="...") {

 // check string length

 // truncate if necessary

 if (strlen($str) > $maxChars) {

 return trim(substr($str, 0, $maxChars)) . $holder;

 } else {

 return $str;

 }

}

// define long string

$str = "Just as there are different flavors of client-side scripting,↵
there are different languages that can be used on

the server as well.";

// truncate and print string

// result: "Just as there are different flavours of..."

echo truncateString($str);

// truncate and print string

// result: "Just as there are di >>>"

echo truncateString($str, 20, " >>>");

?>

ch01.indd 8 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 9

Comments
The user-defined function truncateString() accepts three arguments: the string
to truncate, the length at which to truncate it (default 40 characters), and the custom
character sequence to use at the point of termination (default …). Within the function,
the strlen() function first checks if the string is over or under the permissible limit.
If it’s over the limit, the substr() function slices off the bottom end of the string,
and the placeholder is appended to the top end.

1.8 Converting Between ASCII Characters and Codes

Problem
You want to retrieve the American Standard Code for Information Interchange
(ASCII) code corresponding to a particular character, or vice versa.

Solution
Use the ord() function to get the ASCII code for a character:

<?php

// define character

$char = "\r";

// retrieve ASCII code

// result: 13

$asc = ord($char);

echo $asc;

?>

Use the chr() function to get the character corresponding to an ASCII code:

<?php

// define ASCII code

$asc = 65;

// retrieve character

// result: "A"

$char = chr($asc);

echo $char;

?>

ch01.indd 9 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 1 0 P H P P r o g r a m m i n g S o l u t i o n s

Comments
PHP’s ord() function retrieves the ASCII code corresponding to a particular character
(or the first character, if the argument to ord() contains more than one character). The
chr() function does the reverse, returning the character corresponding to a specific
ASCII code.

You can use chr() to generate the entire alphabet, if you like:

<?php

// result: "abcd...xyz"

for ($a=97; $a<(97+26); $a++) {

 echo chr($a);

}

?>

NOTE

You can find a list of ASCII characters and codes at http://www.lookuptables
.com/, and a Unicode table at http://www.unicode.org/Public/UNIDATA/
NamesList.txt.

1.9 Splitting Strings into Smaller Chunks

Problem
You want to break up a long string into smaller segments, each of a fixed size.

Solution
Use the str_split() function to break the string into fixed-length “chunks”:

<?php

// define string

$str = "The mice jumped over the cat, giggling madly ↵
as the moon exploded into green and purple confetti";

// define chunk size

$chunkSize = 11;

// split string into chunks

// result: [0] = The mice ju [1] = mped over t [2] = he cat, gig

// [3] = gling madly ...

ch01.indd 10 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 1

$chunkedArr = str_split($str, $chunkSize);

print_r($chunkedArr);

?>

Comments
The str_split() function splits a string into fixed-length blocks and returns them
as elements of an array. By default, each “chunk” is one character long, but you
can alter this by passing the str_split() function a second argument defining the
chunk size (as in the previous snippet).

1.10 Comparing Strings for Similarity

Problem
You want to compare two strings to see if they sound similar.

Solution
Use the metaphone() function to test if the strings sound alike:

<?php

// compare strings

// result: "Strings are similar"

echo (metaphone("rest") == metaphone("reset")) ? ↵
"Strings are similar" : "Strings are not similar";

// result: "Strings are similar"

echo (metaphone("deep") == metaphone("dip")) ? ↵
"Strings are similar" : "Strings are not similar";

// result: "Strings are not similar"

echo (metaphone("fire") == metaphone("higher")) ? ↵
"Strings are similar" : "Strings are not similar";

?>

Comments
PHP’s metaphone() function—a more accurate version of its soundex()
function—is one of the more unique ones in the PHP string toolkit. Essentially, this
function produces a signature for the way a string sounds; similar-sounding strings

ch01.indd 11 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 1 2 P H P P r o g r a m m i n g S o l u t i o n s

produce the same signature. You can use this property to test two strings to see if
they’re similar—simply calculate the metaphone() keys of each string and see if
they’re the same.

TIP

The metaphone() function comes in handy in search queries, to find words similar to the
search string the user provides. Also consider the levenshtein() and similar_text()
functions to compare strings by character instead of pronunciation.

1.11 Parsing Comma-Separated Lists

Problem
You want to extract the individual elements of a comma-separated list.

Solution
Decompose the string into an array using the comma as the delimiter:

<?php

// define comma-separated list

$ingredientsStr = "butter, milk, sugar, salt, flour, caramel";

// decompose string into array

// using comma as delimiter

$ingredientsArr = explode(", ", $ingredientsStr);

// iterate over array

// print individual elements

foreach ($ingredientsArr as $i) {

 print $i . "\r\n";

}

?>

Comments
PHP’s explode() function makes it a single-step process to split a comma-separated
string list into an array of individual list elements. The previous listing clearly
illustrates this: the explode() function scans the string for the delimiter and cuts out
the pieces around it, placing them in an array. Once the list items have been extracted,
a foreach() loop is a good way to process the resulting array.

ch01.indd 12 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 3

TIP

You can combine the elements of an array into a comma-separated string list—the reverse of the
listing above—with PHP’s implode() function.

1.12 Parsing URLs

Problem
You want to extract the protocol, domain name, path, or other significant component
of a URL.

Solution
Use the parse_url() function to automatically split the URL into its constituent
parts:

<?php

// define URL

$url = "http://www.melonfire.com:80/community/columns/trog/ ↵
article.php?id=79 &page=2";

// parse URL into associative array

$data = parse_url($url);

// print URL components

foreach ($data as $k=>$v) {

 echo "$k: $v \n";

}

?>

Comments
The parse_url() function is one of PHP’s more useful URL manipulation functions.
Pass it a Uniform Resource Locator (URL), and parse_url() will go to work splitting
it into its individual components. The resulting associative array contains separate keys
for the protocol, host name, port number, remote path, and GET arguments. You can
then easily access and use these keys for further processing—for example, the variable
$data['host'] will return the value www.melonfire.com.

ch01.indd 13 5/3/07 10:30:09 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 1 4 P H P P r o g r a m m i n g S o l u t i o n s

Consider the output of the previous script, which illustrates this:

scheme: http

host: www.melonfire.com

port: 80

path: /community/columns/trog/article.php

query: id=79&page=2

1.13 Counting Words in a String

Problem
You want to count the number of words in a sentence or paragraph.

Solution
Use a pattern to identify the individual words in the string, and then count how many
times that pattern recurs:

<?php

// define string

$text = "Fans of the 1980 group will have little trouble recognizing ↵
the group's distinctive synthesized sounds and hypnotic dance beats,↵
since these two elements are present in almost every song on the ↵
album; however, the lack of diversity and range is troubling, and I'm ↵
hoping we see some new influences in the next album. More

intelligent lyrics might also help.";

// decompose the string into an array of "words"

$words = preg_split('/[^0-9A-Za-z\']+/', $text, -1, ↵
PREG_SPLIT_NO_EMPTY);

// count number of words (elements) in array

// result: "59 words"

echo count($words) . " words";

?>

Comments
The preg_split() function is probably one of PHP’s most underappreciated
functions. This function accepts a Perl-compliant regular expression and a subject

ch01.indd 14 5/3/07 10:30:10 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 5

string, and returns an array containing substrings matching the pattern. It’s a great
way of finding the matches in a string and placing them in a separate array for further
processing. Read more about the function and its arguments at http://www.php
.net/preg_split.

In this listing, the regular expression [^0-9A-Za-z\']+ is a generic pattern that
will match any word. All the words thus matched are fed into the $words array.
Counting the number of words in the string is then simply a matter of obtaining the
size of the $words array.

An alternative is to use the new str_word_count() function to perform this task.
Here’s an example:

<?php

// define string

$text = "Fans of the 1980 group will have little trouble recognizing ↵
the group's distinctive synthesized sounds and hypnotic dance beats,↵
since these two elements are present in almost every song on the ↵
album; however, the lack of diversity and range is troubling, and I'm

↵
hoping we see some new influences in the next album. More intelligent

lyrics might also help.";

// count number of words

// result: "58 words"

$numWords = str_word_count($text);

echo $numWords . " words";

?>

NOTE

Wondering about the discrepancy in the results above? The str_word_count() function
ignores numeric strings when calculating the number of words.

1.14 Spell-Checking Words in a String

Problem
You want to check if one or more words are spelled correctly.

ch01.indd 15 5/3/07 10:30:10 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 1 6 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use PHP’s ext/pspell extension to check words against an internal dictionary:

<?php

// define string to be spell-checked

$str = "someun pleez helpp me i canot spel";

// check spelling

// open dictionary link

$dict = pspell_new("en", "british");

// decompose string into individual words

// check spelling of each word

$str = preg_replace('/[0-9]+/', '', $str);

$words = preg_split('/[^0-9A-Za-z\']+/', $str, -1, ↵
PREG_SPLIT_NO_EMPTY);

foreach ($words as $w) {

 if (!pspell_check($dict, $w)) {

 $errors[] = $w;

 }

}

// if errors exist

// print error list

if (sizeof($errors) > 0) {

 echo "The following words were wrongly spelt: " . ↵
implode(" ", $errors);

}

?>

NOTE

In order for this listing to work, PHP must be compiled with support for the pspell extension. (You
can obtain instructions from the PHP manual at http://www.php.net/pspell.)

Comments
The first task here is to identify the individual words in the sentence or paragraph. You
accomplish this using the preg_split() function and regular expression previously
discussed in the listing in the “1.13: Counting Words in a String” section. The
pspell_new() function is used to open a link to the appropriate language dictionary,
and the pspell_check() function iterates over the word list, checking each word

ch01.indd 16 5/3/07 10:30:10 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 7

against the dictionary. For words that are incorrectly spelled, pspell_check()
returns false; these words are flagged, placed in an array and displayed in a list once
the process is complete.

With a little modification, you can have the previous listing check a file (rather
than a variable) for misspelled words, and even offer suggestions when it encounters
errors. Consider this variant, which illustrates the process and incorporates a call to
pspell_suggest() to recommend alternatives for each wrongly-spelled word:

<?php

// define file to be spell-checked

$file = "badspelling.txt";

// check spelling

// open dictionary link

$dict = pspell_new("en", "british", "", "", PSPELL_FAST);

// open file

$fp = fopen ($file, 'r') or die ("Cannot open file $file");

// read file line by line

$lineCount = 1;

while ($line = fgets($fp, 2048)) {

 // clean up trailing whitespace

 $line = trim($line);

 // decompose line into individual words

 // check spelling of each word

 $line = preg_replace('/[0-9]+/', '', $line);

 $words = preg_split('/[^0-9A-Za-z\']+/', $line, -1, ↵
PREG_SPLIT_NO_EMPTY);

 foreach ($words as $w) {

 if (!pspell_check($dict, $w)) {

 if (!is_array($errors[$lineCount])) {

 $errors[$lineCount] = array();

 }

 array_push($errors[$lineCount], $w);

 }

 }

 $lineCount++;

}

ch01.indd 17 5/3/07 10:30:10 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 1 8 P H P P r o g r a m m i n g S o l u t i o n s

// close file

fclose($fp);

// if errors exist

if (sizeof($errors) > 0) {

 // print error list, with suggested alternatives

 echo "The following words were wrongly spelt: \n";

 foreach ($errors as $k => $v) {

 echo "Line $k: \n";

 foreach ($v as $word) {

 $opts = pspell_suggest($dict, $word);

 echo "\t$word (" . implode(', ', $opts) . ")\n";

 }

 }

}

?>

NOTE

It’s important to remember that pspell_check() returns false on numeric strings. This can
result in numerous false positives if your string contains numbers by themselves. The previous
listing works around this problem by removing all the number sequences from the string/file
before passing it to pspell_check().

1.15 Identifying Duplicate Words in a String

Problem
You want to identify words that appear more than once in a string.

Solution
Decompose the string into individual words, and then count the occurrences of each
word:

<?php

// define string

$str = "baa baa black sheep";

// trim the whitespace at the ends of the string

$str = trim($str);

ch01.indd 18 5/3/07 10:30:10 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 1 9

// compress the whitespace in the middle of the string

$str = ereg_replace('[[:space:]]+', ' ', $str);

// decompose the string into an array of "words"

$words = explode(' ', $str);

// iterate over the array

// count occurrences of each word

// save stats to another array

foreach ($words as $w) {

 $wordStats[strtolower($w)]++;

}

// print all duplicate words

// result: "baa"

foreach ($wordStats as $k=>$v) {

 if ($v >= 2) { print "$k \r\n"; }

}

?>

Comments
The first task here is to identify the individual words in the sentence or paragraph. You
accomplish this by compressing multiple spaces in the string, and then decomposing
the sentence into words with explode(), using a single space as [the] delimiter.
Next, a new associative array, $wordStats, is initialized and a key is created within
it for every word in the original string. If a word occurs more than once, the value
corresponding to that word’s key in the $wordStats array is incremented by 1.

Once all the words in the string have been processed, the $wordStats array will
contain a list of unique words from the original string, together with a number
indicating each word’s frequency. It is now a simple matter to isolate those keys with
values greater than 1, and print the corresponding words as a list of duplicates.

1.16 Searching Strings

Problem
You want to search a string for a particular pattern or substring.

ch01.indd 19 5/3/07 10:30:10 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 2 0 P H P P r o g r a m m i n g S o l u t i o n s

Solution
Use a regular expression with PHP’s ereg() function:

<?php

// define string

$html = "I'm tired and so I must go

home now";

// check for match

// result: "Match"

echo ereg("(.*)+", $html) ? "Match" : "No match";

?>

Use a regular expression with PHP’s preg_match() function:

<?php

// define string

$html = "I'm tired and so I must go

home now";

// check for match

// result: "Match"

echo preg_match("/(.*?)<\/b>/i", $html) ? "Match" : "No match";

?>

Comments
When it comes to searching for matches within a string, PHP offers the ereg()
and preg_match() functions, which are equivalent: both functions accept a regular
expression and a string, and return true if the string contains one or more matches
to the regular expression. Readers familiar with Perl will usually prefer the preg_
match() function, as it enables them to use Perl-compliant regular expressions and,
in some cases, is faster than the ereg() function.

TIP

For case-insensitive matching, use the eregi() function instead of the ereg() function.

TIP

Read more about regular expressions at http://www.melonfire.com/community/
columns/trog/article.php?id=2.

ch01.indd 20 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 1

1.17 Counting Matches in a String

Problem
You want to find out how many times a particular pattern occurs in a string.

Solution
Use PHP’s preg_match_all() function:

<?php

// define string

$html = "I'm tired and so I must go

home now";

// count occurrences of bold text in string

// result: "2 occurrence(s)"

preg_match_all("/(.*?)<\/b>/i", $html, &$matches);

echo sizeof($matches[0]) . " occurrence(s)";

?>

Comments
The preg_match_all() function tests a string for matches to a particular pattern,
and returns an array containing all the matches. If you need the total number of
matches, simply check the size of the array with the sizeof() function.

For simpler applications, also consider the substr_count() function, which
counts the total number of occurrences of a substring within a larger string. Here’s
a brief example:

<?php

// define string

$text = "ha ha ho hee hee ha ho hee hee ho ho ho ha hee";

// count occurrences of "hee " in string

// result: "5 occurrence(s)"

echo substr_count($text, "hee") . " occurrence(s)";

?>

ch01.indd 21 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 2 2 P H P P r o g r a m m i n g S o l u t i o n s

1.18 Replacing Patterns in a String

Problem
You want to replace all/some occurrences of a pattern or substring within a string
with something else.

Solution
Use a regular expression in combination with PHP’s str_replace() function (for
simple patters):

 <?php

// define string

$str = "Michael says hello to Frank";

// replace all instances of "Frank" with "Crazy Dan"

// result: "Michael says hello to Crazy Dan"

$newStr = str_replace("Frank", "Crazy Dan", $str);

echo $newStr;

?>

For more complex patters, use a regular expression in combination with PHP’s
preg_replace() function:

<?php

// define string

$html = "I'm tired and so I must go ↵
home now";

// replace all bold text with italics

// result: "I'm <i>tired</i> and so I <i>must</i> go

home now"

$newStr = preg_replace("/(.*?)<\/b>/i", "<i>\\1</i>", $html);

echo $newStr;

?>

Comments
For simple applications that don’t need complex pattern matching or regular
expressions, consider PHP’s str_replace() function. You can’t use regular

ch01.indd 22 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 3

expressions with this function—all it enables you to do is replace one (or more)
substrings with one (or more) replacement strings. Although it’s limited, it can be
faster than either ereg_replace() or preg_replace() in situations which don’t
call for advanced expression processing.

PHP’s preg_replace() function takes the preg_match() function a step
forward—in addition to searching for regular expression matches in the target string,
it can also replace each match with something else. The preg_replace() function
accepts a Perl-compliant regular expression, and its return value is the original
string after all substitutions have been made. If no matches could be found, the
original string is returned. Note also the use of a back-reference (\\1) in the preg_
replace() version of the listing; this back-reference serves as a placeholder for text
enclosed within the pattern to be matched.

By default, both functions replace all occurrences of the search string with the
replacement string. With preg_replace(), however, you can control the number
of matches that are replaced by passing the function an optional fourth parameter.
Consider the following snippet, which limits the number of replacements to 1 (even
though there are two valid matches):

<?php

// define string

$html = "I'm tired and so I must go

 home now";

// replace all bold text with italics

// result: "I'm <i>tired</i> and so I must go

 home now"

$newStr = preg_replace("/(.*?)<\/b>/i", "<i>\\1</i>", $html, 1);

echo $newStr;

?>

As an interesting aside, you can find out the number of substrings replaced by
str_replace() by passing the function an optional fourth parameter, which counts
the number of replacements. Here’s an illustration:

<?php

// define string

$str = "Michael says hello to Frank. Frank growls at Michael. Michael ↵
feeds Frank a bone.";

// replace all instances of "Frank" with "Crazy Dan"

$newStr = str_replace("Frank", "Crazy Dan", $str, &$counter);

ch01.indd 23 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 2 4 P H P P r o g r a m m i n g S o l u t i o n s

// print number of replacements

// result: "3 replacement(s)"

echo "$counter replacement(s)";

?>

TIP

You can perform multiple search-replace operations at once with str_replace(), by using
arrays for both the search and replacement strings.

1.19 Extracting Substrings

Problem
You want to extract the substring preceding or following a particular match.

Solution
Use the preg_split() function to split the original string into an array delimited by
the match term, and then extract the appropriate array element(s):

<?php

// define string

$html = "Just when you begin to think the wagon of ↵
Vietnam-grounded movies is grinding to a slow halt, ↵
you're hit squarely in the face with another ↵
one. However, while other movies depict the gory and glory of war ↵
and its effects, this centers on the ↵
psychology of troopers before ↵
they're led to battle.";

// split on <a> element

$matches = preg_split("/<a(.*?)>(.*?)<\/a>/i", $html);

// extract substring preceding first match

// result: "Just when...of"

echo $matches[0];

// extract substring following last match

// result: "of troopers...battle."

echo $matches[sizeof($matches)-1];

?>

ch01.indd 24 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 5

Comments
The preg_split() function accepts a regular expression and a search string, and
uses the regular expression as a delimiter to split the string into segments. Each
of these segments is placed in an array. Extracting the appropriate segment is then
simply a matter of retrieving the corresponding array element.

This is clearly illustrated in the previous listing. To extract the segment preceding
the first match, retrieve the first array element (index 0); to extract the segment
following the last match, retrieve the last array element.

If your match term is one or more regular words, rather than a regular expression,
you can accomplish the same task more easily by explode()-ing the string into an
array against the match term and extracting the appropriate array elements. The next
listing illustrates this:

<?php

// define string

$str = "apples and bananas and oranges and pineapples and lemons";

// define search pattern

$search = " and ";

// split string into array

$matches = explode($search, $str);

// count number of segments

$numMatches = sizeof($matches);

// extract substring preceding first match

// result: "apples"

echo $matches[0];

// extract substring between first and fourth matches

// result: "bananas and oranges and pineapples"

echo implode($search, array_slice($matches, 1, 3));

// extract substring following last match

// result: "lemons"

echo $matches[$numMatches-1];

?>

ch01.indd 25 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 2 6 P H P P r o g r a m m i n g S o l u t i o n s

1.20 Extracting Sentences from a Paragraph

Problem
You want to extract the first or last sentence from a paragraph.

Solution
Use the strtok() function to break the paragraph into sentences, and then extract
the appropriate sentence:

<?php

// define string

$text = "This e-mail message was sent from a notification-only address! ↵
It cannot accept incoming e-mail. Please do not reply to this message. ↵
Do you understand?";

// extract first sentence

// result: "This e-mail message was sent from a notification-only ↵
address"

$firstSentence = strtok($text, ".?!");

echo $firstSentence;

// extract last sentence

// result: "Do you understand"

$lastSentence = strrev(strtok(strrev(trim($text)), ".?!"));

echo $lastSentence;

?>

Comments
To extract the first or last sentence of a paragraph, it is necessary to first break the
string into individual sentences, using the common sentence terminators—a period,
a question mark, and an exclamation mark—as delimiters. PHP’s strtok() function
is ideal for this: it splits a string into smaller segments, or tokens, based on a list
of user-supplied delimiters. The first token obtained in this manner will be the first
sentence of the paragraph.

Extracting the last sentence is a little more involved, and there are quite a few
ways to do it. The previous listing uses one of the simplest: it reverses the paragraph

ch01.indd 26 5/3/07 10:30:11 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 7

and extracts the last sentence as though it were the first, again using strtok(). The
extracted segment is then re-reversed using the strrev() function.

1.21 Generating String Checksums

Problem
You want to obtain a hash signature for a string

Solution
Use PHP’s md5() or sha1() functions:

 <?php

// define string

$str = "two meters north, five meters west";

// obtain MD5 hash of string

// result: "7c00dcc2a1e4e89133b849a003448788"

$md5 = md5($str);

echo $md5;

// obtain SHA1 hash of string

// result: "d5db0063b0e2d4d7d33514e2da3743ce8daa44bf"

$sha1 = sha1($str);

echo $sha1;

?>

Comments
A hash signature is a lot like a fingerprint—it uniquely identifies the source that was
used to compute it. Typically, a hash signature is used to verify if two copies of a
string or file are identical in all respects; if both produce the same hash signature,
they can be assumed to be identical. A hash function, like PHP’s md5() or sha1()
function, accepts string input and produces a fixed-length signature (sometimes
called a checksum) that can be used for comparison or encryption. The md5()
function produces a 128-bit hash, while the sha1() function produces a 160-bit
hash. Read more at http://www.faqs.org/rfcs/rfc1321.html.

ch01.indd 27 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 2 8 P H P P r o g r a m m i n g S o l u t i o n s

1.22 Encrypting Strings (One-Way Encryption)

Problem
You want to encrypt a string using one-way encryption.

Solution
Use PHP’s crypt() function:

<?php

// define cleartext string

$password = "guessme";

// define salt

$salt = "rosebud";

// encrypt string

// result: "rouuR6YmPKTOE"

$cipher = crypt($password, $salt);

echo $cipher;

?>

Comments
PHP’s crypt() function accepts two parameters: the string to encrypt and a key
(or salt) to use for encryption. It then encrypts the string using the provided salt and
returns the encrypted string (or ciphertext). A particular combination of cleartext and
salt is unique—the ciphertext generated by crypt()-ing a particular string with a
particular salt remains the same over multiple crypt() invocations.

Because the crypt() function uses one-way encryption, there is no way to
recover the original string from the ciphertext. You’re probably wondering what use
this is—after all, what’s the point of encrypting something so that it can never be
decrypted? Well, one-way encryption does have its uses, most notably for password
verification: it’s possible to validate a previously-encrypted password against a
user’s input by re-encrypting the input with the same salt and checking to see if the
two pieces of ciphertext match. The next example illustrates this process:

<?php

// define cleartext string

$password = "guessme";

ch01.indd 28 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 2 9

// define salt

$salt = "rosebud";

// encrypt string

$cipher = crypt($password, $salt);

// assume the user inputs this

$input = "randomguess";

// encrypt the input

// test it against the encrypted password

// result: "Passwords don't match"

echo ($cipher == crypt($input, $salt)) ? ↵
"Passwords match" : "Passwords don't match";

// now assume the user inputs this

$input = "guessme";

// encrypt the input

// test it against the encrypted password

// result: "Passwords match"

echo ($cipher == crypt($input, $salt)) ? ↵
"Passwords match" : "Passwords don't match";

?>

Here, the cleartext password is encrypted with PHP’s crypt() function and the
defined salt, with the result checked against the (encrypted) original password. If
the two match, it indicates that the supplied password was correct; if they don’t, it
indicates that the password was wrong.

1.23 Encrypting Strings (Two-Way Encryption)

Problem
You want to encrypt a string using two-way encryption.

Solution
Use PHP’s ext/mcrypt extension to perform two-way encryption or decryption:

<?php

// function to encrypt data

ch01.indd 29 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 3 0 P H P P r o g r a m m i n g S o l u t i o n s

function encryptString($plaintext, $key) {

 // seed random number generator

 srand((double) microtime() * 1000000);

 // encrypt string

 $iv = mcrypt_create_iv(↵
mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CFB), ↵
MCRYPT_RAND);

 $cipher = mcrypt_encrypt(MCRYPT_BLOWFISH, $key, ↵
$plaintext, MCRYPT_MODE_CFB, $iv);

 // add IV to ciphertext

 return $iv . $cipher;

}

// function to decrypt data

function decryptString($ciphertext, $key) {

 // extract IV

 $iv = substr($ciphertext, 0,↵
mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CFB));

 $cipher = substr($ciphertext, ↵
mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CFB));

 // decrypt string

 return mcrypt_decrypt(MCRYPT_BLOWFISH, $key, $cipher,↵
MCRYPT_MODE_CFB, $iv);

}

// define cleartext string

$input = "three paces west, up the hill, turn nor-nor-west ↵
and fire through the left eye socket";

// define key

$key = "rosebud";

// returns encrypted string

$ciphertext = encryptString($input, $key);

echo $ciphertext;

// returns decrypted string

$cleartext = decryptString($ciphertext, $key);

echo $cleartext;

?>

ch01.indd 30 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 3 1

NOTE

In order for this listing to work, PHP must be compiled with support for the mcrypt extension (you
can obtain instructions from the PHP manual at http://www.php.net/mcrypt).

Comments
The previous listing uses two user-defined functions: encryptString() and
decryptString(). Internally, both use functions provided by PHP’s ext/mcrypt
extension, which supports a wide variety of encryption algorithms (Blowfish, DES,
TripleDES, IDEA, Rijndael, Serpent, and others) and cipher modes (CBC, CFB,
OFB, and ECB). Both functions accept a string and a key, and use the latter to
encrypt or decrypt the former.

The encryptString() function begins by seeding the random number generator
and then generating an initialization vector (IV) with the mcrypt_create_iv()
function. Once an IV has been generated, the mcrypt_encrypt() function performs
the encryption using the supplied key. The encryption in this example uses the
Blowfish algorithm in CFB mode. The IV is prepended to the encrypted string; this
is normal and does not affect the security of the encryption.

The decryptString() function words in reverse, obtaining the IV size for the
selected encryption algorithm and mode with the mcrypt_get_iv_size() function
and then extracting the IV from the beginning of the encrypted string with the
substr() function. The IV, encrypted string, and key are then used by the mcrypt_
decrypt() function to retrieve the original cleartext string.

Read more about encryption algorithms and modes at http://en.wikipedia
.org/wiki/Encryption_algorithm.

1.24 Generating Pronounceable Passwords

Problem
You want to generate a pronounceable password.

Solution
Use PEAR’s Text_Password class:

<?php

// include Text_Password class

include "Text/Password.php";

ch01.indd 31 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 3 2 P H P P r o g r a m m i n g S o l u t i o n s

// create object

$tp = new Text_Password();

// generate pronounceable password

// result: "sawralaeje" (example)

$password = $tp->create();

echo $password;

?>

Comments
If you’re looking for a quick way to generate pronounceable passwords—perhaps for
a Web site authentication system—look no further than the PEAR Text_Password
class (available from http://pear.php.net/package/Text_Password). By
default, the class method create() generates a ten-character pronounceable password
using only vowels and consonants.

You can define a custom length for the password by passing an optional size
argument to the create() method, as follows:

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 5-character pronounceable password

// result: "ookel" (example)

$password = $tp->create(5);

echo $password;

?>

1.25 Generating Unpronounceable Passwords

Problem
You want to generate an unpronounceable password.

ch01.indd 32 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 C h a p t e r 1 : W o r k i n g w i t h S t r i n g s 3 3

Solution
Use PEAR’s Text_Password class with some additional parameters:

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 7-character unpronounceable password

// result: "_nCx&h#" (example)

$password = $tp->create(7, 'unpronounceable');

echo $password;

?>

Comments
The PEAR Text_Password class (available from http://pear.php.net/
package/Text_Password) is designed specifically to generate both pronounceable
and unpronouceable passwords of varying lengths. To generate an unpronounceable
password made up of alphabets, numbers, and special characters, call the class method
create() with two additional flags: the desired password size and the keyword
unpronounceable (the default behavior is to generate pronounceable passwords ten
characters long).

If you’d like to restrict the characters that can appear in the password, you can
pass the create() method a third argument: either of the keywords 'numeric' or
'alphanumeric', or a comma-separated list of allowed characters. The following
code snippets illustrate this:

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 7-character unpronounceable password

// using only numbers

// result: "0010287" (example)

$password = $tp->create(7, 'unpronounceable', 'numeric');

echo $password;

?>

ch01.indd 33 5/3/07 10:30:12 AM

D_Base / PHP Programming Solutions / Vikram Vaswani / 7148745-x / Chapter 1

 3 4 P H P P r o g r a m m i n g S o l u t i o n s

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 12-character unpronounceable password

// using only letters and numbers

// result: "P44g62gk6YIp" (example)

$password = $tp->create(12, 'unpronounceable', 'alphanumeric');

echo $password;

?>

<?php

// include Text_Password class

include "Text/Password.php";

// create object

$tp = new Text_Password();

// generate 5-character unpronounceable password

// using a pre-defined character list

// result: "okjnn" (example)

$password = $tp->create(5, 'unpronounceable', 'i,j,k,l,m,n,o,p');

echo $password;

?>

ch01.indd 34 5/3/07 10:30:13 AM

