
BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

249

Chapter 8
Working with XML

ch08.indd 249 9/10/08 6:04:56 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 250 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Key Skills & Concepts
● Understand basic XML concepts and technologies

● Understand PHP’s SimpleXML and DOM extensions

● Access and manipulate XML documents with PHP

● Create new XML documents from scratch using PHP

● Integrate third-party RSS feeds in a PHP application

● Convert between SQL and XML using PHP

The Extensible Markup Language (XML) is a widely accepted standard for data
description and exchange. It allows content authors to “mark up” their data with

customized machine-readable tags, thereby making data easier to classify and search.
XML also helps enforce a formal structure on content, and it provides a portable format
that can be used to easily exchange information between different systems.

PHP has included support for XML since PHP 4, but it was only in PHP 5 that the
various XML extensions in PHP were standardized to use a common XML parsing toolkit.
This chapter introduces you to two of PHP’s most useful and powerful XML processing
extensions—SimpleXML and DOM—and includes numerous code examples and practical
illustrations of using XML in combination with PHP-based applications.

Introducing XML
Before getting into the nitty-gritty of manipulating XML files with PHP, it’s instructive
to spend some time getting familiar with XML. If you’re new to XML, the following
section provides a grounding in basic XML, including an overview of XML concepts and
technologies. This information will be helpful to understand the more advanced material
in subsequent sections.

XML Basics
Let’s begin with a very basic question: what is XML, and why is it useful?

XML is a language that helps document authors describe the data in a document, by
“marking it up” with custom tags. These tags don’t come from a predefined list; instead,

ch08.indd 250 9/10/08 6:04:56 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 251

XML encourages authors to create their own tags and structure, suited to their own
particular requirements, as a way to increase flexibility and usability. This fact, coupled
with the Recommendation status bestowed on it by the W3C in 1998, has served to make
XML one of the most popular ways to describe and store structured information on (and
off) the Web.

XML data is physically stored in text files. This makes XML documents very portable,
because every computer system can read and process text files. Not only does this
facilitate data sharing, but it also allows XML to be used in a wide variety of applications.
For example, the Rich Site Summaries (RSS) and Atom Weblog feed formats are both
based on XML, as is Asynchronous JavaScript and XML (AJAX) and the Simple Object
Access Protocol (SOAP).

Q: What programs can I use to create or view an XML file?

A: On a UNIX/Linux system, both vi and emacs can be used to create XML documents,
while Notepad remains a favorite on Windows systems. Both Microsoft Internet
Explorer and Mozilla Firefox have built-in XML support and can read and display
an XML document in a hierarchical tree view.

Ask the Expert

Anatomy of an XML Document
Internally, an XML document is made up of various components, each one serving
a specific purpose. To understand these components, consider the following XML
document, which contains a recipe for spaghetti bolognese:

1. <?xml version='1.0'?>
2. <recipe>
3. <ingredients>
4. <item quantity="250" units="gm">Beef mince</item>
5. <item quantity="200" units="gm">Onions</item>
6. <item quantity="75" units="ml">Red wine</item>
7. <item quantity="12">Tomatoes</item>
8. <item quantity="2" units="tbsp">Parmesan cheese</item>
9. <item quantity="200" units="gm">Spaghetti</item>
10. </ingredients>
11. <method>
12. <step number="1">Chop and fry the onions.</step>
13. <step number="2">Add the mince to the fried onions &
continue frying.</step>

ch08.indd 251 9/10/08 6:04:56 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 252 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

14. <step number="3">Puree the tomatoes and blend them into the
mixture with the wine.</step>
15. <step number="4">Simmer for an hour.</step>
16. <step number="5">Serve on top of cooked pasta with Parmesan
cheese.</step>
17. </method>
18. </recipe>

This XML document contains a recipe, broken up into different sections; each
section is further “marked up” with descriptive tags to precisely identify the type of data
contained within it. Let’s look at each of these in detail.

 1. Every XML document must begin with a declaration that states the version of XML
being used; this declaration is referred to as the document prolog, and it can be seen
in Line 1 of the preceding XML document. In addition to the version number, this
document prolog may also contain character encoding information and Document Type
Definition (DTD) references (for data validation).

 2. The document prolog is followed by a nested series of elements (Lines 2–18). Elements
are the basic units of XML; they typically consist of a pair of opening and closing
tags that enclose some textual content. Element names are user-defined; they should
be chosen with care, as they are intended to describe the content sandwiched between
them. Element names are case-sensitive and must begin with a letter, optionally
followed by more letters and numbers. The outermost element in an XML document—
in this example, the element named <recipe> on Line 2—is known as the document
element or the root element.

 3. The textual data enclosed within elements is known, in XML parlance, as character
data. This character data can consist of strings, numbers, and special characters (with
some exceptions: angle brackets and ampersands within textual data should be replaced
with the entities <, $gt;, and & respectively to avoid confusing the XML
parser when it reads the document). Line 13, for example, uses the & entity to
represent an ampersand within its character data.

 4. Finally, elements can also contain attributes, which are name-value pairs that hold
additional information about the element. Attribute names are case-sensitive and
follow the same rules as element names. The same attribute name cannot be used more
than once within the same element, and attribute values should always be enclosed in
quotation marks. Lines 4–9 and 12–16 in the example document illustrate the use of
attributes to provide additional descriptive information about the element to which they
are attached; for example, the 'units' attribute specifies the unit measure for each
ingredient.

ch08.indd 252 9/10/08 6:04:57 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 253

XML documents can also contain various other components: namespaces, processing
instructions, and CDATA blocks. These are a little more complex, and you won’t see them
in any of the examples used in this chapter; however, if you’re interested in learning more
about them, take a look at the links at the end of the chapter for more detailed information
and examples.

Q: Can I create elements that don’t contain anything?

A: Sure. The XML specification supports elements that hold no content and therefore do
not require a closing tag. To close these elements, simply add a slash to the end of the
opening tag, as in the following code snippet:

The line breaks
 here.

Ask the Expert

Well-Formed and Valid XML
The XML specification makes an important distinction between well-formed and valid
documents.

● A well-formed document follows all the rules for element and attribute names, contains
all essential declarations, contains one (and only one) root element, and follows a
correctly nested element hierarchy below the root element. All the XML documents
you’ll see in this chapter are well-formed documents.

● A valid document is one which meets all the conditions of being well-formed and also
conforms to additional rules laid out in a Document Type Definition (DTD) or XML
Schema. This chapter doesn’t discuss DTDs or XML Schemas in detail, so you won’t
see any examples of this type of document; however, you’ll find many examples of
such documents online, and in the resource links at the end of the chapter.

XML Parsing Methods
Typically, an XML document is processed by a software application known as an XML
parser. This parser reads the XML document using one of two approaches, the Simple API
for XML (SAX) approach or the Document Object Model (DOM) approach:

● A SAX parser works by traversing an XML document sequentially, from beginning
to end, and calling specific user-defined functions as it encounters different types of
XML constructs. Thus, for example, a SAX parser might be programmed to call one

ch08.indd 253 9/10/08 6:04:57 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 254 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

function to process an attribute, another one to process a starting element, and yet a
third one to process character data. The functions called in this manner are responsible
for actually processing the XML construct found, and any information stored within it.

● A DOM parser, on the other hand, works by reading the entire XML document in one
fell swoop and converting it to a hierarchical “tree” structure in memory. The parser
can then be programmed to traverse the tree, jumping between “sibling” or “child”
branches of the tree to access specific pieces of information.

Each of these methods has pros and cons: SAX reads XML data in “chunks” and is
efficient for large files, but it requires the programmer to create customized functions to
handle the different elements in an XML file. DOM requires less customization but can
rapidly consume memory for its actions and so is often unsuitable for large XML data
files. The choice of method thus depends heavily on the requirements of the application
in question.

XML Technologies
As XML’s popularity has increased, so too has the list of technologies that use it. Here are
a few that you might have heard about already:

● XML Schema XML Schemas define the structure and format of XML documents,
allowing for more flexible validation and support for datatyping, inheritance,
grouping, and database linkage.

● XLink XLink is a specification for linking XML data structures together. It allows
for more sophisticated link types than regular HTML hyperlinks, including links with
multiple targets.

● XPointer XPointer is a specification for navigating the hierarchical tree structure of
an XML document, easily finding elements, attributes, and other data structures within
the document.

● XSL The Extensible Stylesheet Language (XSL) applies formatting rules to XML
documents and “transforms” them from one format to another.

● XHTML XHTML combines the precision of XML markup with the easy-to-
understand tags of HTML to create a newer, more standards-compliant version of
HTML.

● XForms XForms separates the information gathered in a Web form from the form’s
appearance, allowing for more stringent validation and easier reuse of forms in
different media.

ch08.indd 254 9/10/08 6:04:57 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 255

Try This 8-1

● XML Query XML Query allows developers to query XML document and generate
result sets, in much the same way that SQL is used to query and retrieve database
records.

● XML Encryption and XML Signature XML Encryption is a means of encrypting
and decrypting XML documents, and representing the resulting data. It is closely
related to XML Signature, which provides a way to represent and verify digital
signatures with XML.

● SVG Scalable Vector Graphics (SVG) uses XML to describe vector or raster
graphical images, with support for alpha masks, filters, paths, and transformations.

● MathML MathML uses XML to describe mathematical expressions and formulae,
such that they can be easily rendered by Web browsers.

● SOAP The Simple Object Access Protocol (SOAP) uses XML to encode requests
and responses between network hosts using HTTP.

Q: When should I use an attribute, and when should I use an element?

A: Both attributes and elements contain descriptive data, so it’s often a matter of judgment
as to whether a particular piece of information is better stored as an element or as an
attribute. In most cases, if the information is hierarchically structured, elements are
more appropriate containers; on the other hand, attributes are better for information that
is ancillary or does not lend itself to a formal structure.

For a more formal discussion of this topic, take a look at the IBM developerWorks
article at www.ibm.com/developerworks/xml/library/x-eleatt.html, which discusses
the issues involved in greater detail.

Ask the Expert

 Creating an XML Document
Now that you know the basics of XML, let’s put that knowledge to the test by creating
a well-formed XML document and viewing it in a Web browser. This document will
describe a library of books using XML. Each entry in the document will contain
information on a book’s title, author, genre, and page count.

(continued)

ch08.indd 255 9/10/08 6:04:57 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 256 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

To create this XML document, pop open your favorite text editor and enter the
following markup (library.xml):

<?xml version="1.0"?>
<library>
 <book id="1" genre="horror" rating="5">
 <title>The Shining</title>
 <author>Stephen King</author>
 <pages>673</pages>
 </book>
 <book id="2" genre="suspense" rating="4">
 <title>Shutter Island</title>
 <author>Dennis Lehane</author>
 <pages>390</pages>
 </book>
 <book id="3" genre="fantasy" rating="5">
 <title>The Lord Of The Rings</title>
 <author>J. R. R. Tolkien</author>
 <pages>3489</pages>
 </book>
 <book id="4" genre="suspense" rating="3">
 <title>Double Cross</title>
 <author>James Patterson</author>
 <pages>308</pages>
 </book>
 <book id="5" genre="horror" rating="4">
 <title>Ghost Story</title>
 <author>Peter Straub</author>
 <pages>389</pages>
 </book>
 <book id="6" genre="fantasy" rating="3">
 <title>Glory Road</title>
 <author>Robert Heinlein</author>
 <pages>489</pages>
 </book>
 <book id="7" genre="horror" rating="3">
 <title>The Exorcist</title>
 <author>William Blatty</author>
 <pages>301</pages>
 </book>
 <book id="8" genre="suspense" rating="2">
 <title>The Camel Club</title>
 <author>David Baldacci</author>
 <pages>403</pages>
 </book>
</library>

Save this file to a location under your Web server’s document root, and name it
library.xml. Then, start up your Web browser, and browse to the URL corresponding
to the file location. You should see something like Figure 8-1.

ch08.indd 256 9/10/08 6:04:57 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 257

Using PHP’s SimpleXML Extension
Although PHP has support for both DOM and SAX parsing methods, by far the easiest
way to work with XML data in PHP is via its SimpleXML extension. This extension,
which is enabled by default in PHP 5, provides a user-friendly and intuitive interface to
reading and processing XML data in a PHP application.

Working with Elements
SimpleXML represents every XML document as an object and turns the elements within it
into a hierarchical set of objects and object properties. Accessing a particular element now
becomes as simple as using parent->child notation to traverse the object tree until that
element is reached.

Figure 8-1 An XML document, as seen in Mozilla Firefox

ch08.indd 257 9/10/08 6:04:58 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 258 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

To illustrate how this works in practice, consider the following XML file (address.xml):

<?xml version='1.0'?>
<address>
 <street>13 High Street</street>
 <county>Oxfordshire</county>
 <city>
 <name>Oxford</name>
 <zip>OX1 1BA</zip>
 </city>
 <country>UK</country>
</address>

Here’s a PHP script that uses SimpleXML to read this file and retrieve the city name
and ZIP code:

<?php
// load XML file
$xml = simplexml_load_file('address.xml') or die ("Unable to load XML!");

// access XML data
// output: 'City: Oxford \n Postal code: OX1 1BA\n'
echo "City: " . $xml->city->name . "\n";
echo "Postal code: " . $xml->city->zip . "\n";
?>

To read an XML file with SimpleXML, use the simplexml_load_file() function
and pass it the disk path to the target XML file. This function will then read and parse
the XML file and, assuming it is well-formed, return a SimpleXML object representing
the document’s root element. This object is only the top level of a hierarchical object tree
that mirrors the internal structure of the XML data: elements below the root element are
represented as properties or child objects and can thus be accessed using the standard
parentObject->childObject notation.

TIP
If your XML data is in a string variable instead of a file, use the simplexml_load_
string() function to read it into a SimpleXML object.

Multiple instances of the same element at the same level of the XML document tree
are represented as arrays. These can easily be processed using PHP’s loop constructs. To
illustrate, consider this next example, which reads the library.xml file developed in the
preceding section and prints the title and author names found within it:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

ch08.indd 258 9/10/08 6:04:58 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 259

// loop over XML data as array
// print book titles and authors
// output: 'The Shining is written by Stephen King. \n ...'
foreach ($xml->book as $book) {
 echo $book->title . " is written by " . $book->author . ".\n";
}
?>

Here, a foreach loop iterates over the <book> objects generated from the XML data,
printing each object’s 'title' and 'author' properties.

You can also count the number of elements at particular level in the XML document
with a simple call to count(). The next listing illustrates, counting the number of
<book>s in the XML document:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// loop over XML data as array
// print count of books
// output: '8 book(s) found.'
echo count($xml->book) . ' book(s) found.';
?>

Working with Attributes
If an XML element contains attributes, SimpleXML has an easy way to get to these as
well: attributes and values are converted into keys and values of a PHP associative array
and can be accessed like regular array elements.

To illustrate, consider the following example, which reads the library.xml file from
the preceding section and prints each book title found, together with its 'genre' and
'rating':

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// access XML data
// for each book
// retrieve and print 'genre' and 'rating' attributes
// output: 'The Shining \n Genre: horror \n Rating: 5 \n\n ...'
foreach ($xml->book as $book) {
 echo $book->title . "\n";
 echo "Genre: " . $book['genre'] . "\n";
 echo "Rating: " . $book['rating'] . "\n\n";
}
?>

ch08.indd 259 9/10/08 6:04:58 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 260 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Try This 8-2

In this example, a foreach loop iterates over the <book> elements in the XML data,
turning each into an object. Attributes of the book element are represented as elements of
an associative array and can thus be accessed by key: the key 'genre' returns the value
of the 'genre' attribute, and the key 'rating' returns the value of the 'rating'
attribute.

 Converting XML to SQL
Now that you know how to read XML elements and attributes, let’s look at a practical
example of SimpleXML in action. This next program reads an XML file and converts the
data within it into a series of SQL statements, which can be used to transfer the data into
a MySQL or other SQL-compliant database.

Here’s the sample XML file (inventory.xml):

<?xml version='1.0'?>
<items>
 <item sku="123">
 <name>Cheddar cheese</name>
 <price>3.99</price>
 </item>
 <item sku="124">
 <name>Blue cheese</name>
 <price>5.49</price>
 </item>
 <item sku="125">
 <name>Smoked bacon (pack of 6 rashers)</name>
 <price>1.99</price>
 </item>
 <item sku="126">
 <name>Smoked bacon (pack of 12 rashers)</name>
 <price>2.49</price>
 </item>
 <item sku="127">
 <name>Goose liver pate</name>
 <price>7.99</price>
 </item>
 <item sku="128">
 <name>Duck liver pate</name>
 <price>6.49</price>
 </item>
</items>

ch08.indd 260 9/10/08 6:04:58 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 261

And here’s the PHP code that converts this XML data into SQL statements
(xml2sql.php):

<?php

// load XML file

$xml = simplexml_load_file('inventory.xml') or die ("Unable to load XML!");

// loop over XML <item> elements

// access child nodes and interpolate with SQL statement

foreach ($xml as $item) {

 echo "INSERT INTO items (sku, name, price) VALUES ('" . addslashes($item['sku']) .

"','" . addslashes($item->name) . "','" . addslashes($item->price) . "');\n";

}

?>

This script should be simple to understand if you’ve been following along: it iterates
over all the <item> elements in the XML document, using object->property notation
to access each item’s <name> and <price>. The 'sku' attribute of each <item> is
similarly accessed via the 'sku' key of each item’s attribute array. The values retrieved
in this fashion are then interpolated into an SQL INSERT statement.

This statement would normally then be supplied to a function such as mysql_
query() or sqlite_query() for insertion into a MySQL or SQLite database; for
purposes of this example, it’s simply printed to the output device.

Figure 8-2 illustrates the output of this script.

Figure 8-2 Converting XML to SQL with SimpleXML

ch08.indd 261 9/10/08 6:04:59 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 262 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Altering Element and Attribute Values
With SimpleXML, it’s easy to change the content in an XML file: simply assign a new
value to the corresponding object property using PHP’s assignment operator (=). To
illustrate, consider the following PHP script, which changes the title and author of the
second book in library.xml and then outputs the revised XML document:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// change element values
// set new title and author for second book
$xml->book[1]->title = 'Invisible Prey';
$xml->book[1]->author = 'John Sandford';

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

Here, SimpleXML is used to access the second <book> element by index, and the
values of the <title> and <author> elements are altered by setting new values for
the corresponding object properties. Notice the asXML() method, which is new in this
example: it converts the nested hierarchy of SimpleXML objects and object properties
back into a regular XML string.

Changing attribute values is just as easy: assign a new value to the corresponding key
of the attribute array. Here’s an example, which changes the sixth book’s 'rating' and
outputs the result:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// change attribute values
// set new rating for sixth book
$xml->book[5]{'rating'} = 5;

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

ch08.indd 262 9/10/08 6:04:59 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 263

Adding New Elements and Attributes
In addition to allowing you to alter element and attribute values, SimpleXML also lets you
dynamically add new elements and attributes to an existing XML document. To illustrate,
consider the next script, which adds a new <book> to the library.xml XML data:

<?php
// load XML file
$xml = simplexml_load_file('library.xml') or die ("Unable to load XML!");

// get the last book 'id'
$numBooks = count($xml->book);
$lastID = $xml->book[($numBooks-1)]{'id'};

// add a new <book> element
$book = $xml->addChild('book');

// get the 'id' attribute
// for the new <book> element
// by incrementing $lastID by 1
$book->addAttribute('id', ($lastID+1));

// add 'rating' and 'genre' attributes
$book->addAttribute('genre', 'travel');
$book->addAttribute('rating', 5);

// add <title>, <author> and <page> elements
$title = $book->addChild('title', 'Frommer\'s Italy 2007');
$author = $book->addChild('author', 'Various');
$page = $book->addChild('pages', 820);

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

Every SimpleXML object exposes an addChild() method (for adding new child
elements) and an addAttribute() method (for adding new attributes). Both these
methods accept a name and a value, generate the corresponding element or attribute, and
attach it to the parent object within the XML hierarchy.

These methods are illustrated in the preceding listing, which begins by reading
the existing XML document into a SimpleXML object. The root element of this XML
document is stored in the PHP object $xml. The listing then needs to calculate the
ID to be assigned to the new <book> element: it does this by counting the number of
<book> elements already present in the XML document, accessing the last such element,
retrieving that element’s 'id' attribute, and adding 1 to it.

ch08.indd 263 9/10/08 6:04:59 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 264 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

With that formality out of the way, the listing then dives into element and attribute
creation proper:

 1. It starts off by attaching a new <book> element to the root element, by invoking the
$xml object’s addChild() method. This method accepts the name of the element to
be created and (optionally) a value for that element. The resultant XML object is stored
in the PHP object $book.

 2. With the element created, it’s now time to set its 'id', 'genre', and 'rating'
attributes. This is done via the $book object’s addAttribute() method, which also
accepts two arguments—the attribute name and value—and sets the corresponding
associative array keys.

 3. Once the outermost <book> element is fully defined, it’s time to add the <title>,
<author>, and <pages> elements as children of this <book> element. This is easily
done by again invoking the addChild() method, this time of the $book object.

 4. Once these child objects are defined, the object hierarchy is converted to an XML
document string with the asXML() method.

Figure 8-3 illustrates what the output looks like.

Creating New XML Documents
You can also use SimpleXML to create a brand-spanking-new XML document from
scratch, by initializing an empty SimpleXML object from an XML string, and then using
the addChild() and addAttribute() methods to build the rest of the XML document
tree. Consider the following example, which illustrates the process:

<?php
// load XML from string
$xmlStr = "<?xml version='1.0'?><person></person>";
$xml = simplexml_load_string($xmlStr);

// add attributes
$xml->addAttribute('age', '18');
$xml->addAttribute('sex', 'male');

// add child elements
$xml->addChild('name', 'John Doe');
$xml->addChild('dob', '04-04-1989');

// add second level of child elements
$address = $xml->addChild('address');

ch08.indd 264 9/10/08 6:04:59 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 265

$address->addChild('street', '12 A Road');
$address->addChild('city', 'London');

// add third level of child elements
$country = $address->addChild('country', 'United Kingdom');
$country->addAttribute('code', 'UK');

// output new XML string
header('Content-Type: text/xml');
echo $xml->asXML();
?>

This PHP script is similar to what you’ve already seen in the preceding section, with
one important difference: instead of grafting new elements and attributes on to a preexisting
XML document tree, this one generates an XML document tree entirely from scratch!

Figure 8-3 Inserting elements into an XML tree with SimpleXML

ch08.indd 265 9/10/08 6:05:00 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 266 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Try This 8-3

The script begins by initializing a string variable to hold the XML document prolog
and root element. The simplexml_load_string() method takes care of converting
this string into a SimpleXML object representing the document’s root element. Once this
object has been initialized, it’s a simple matter to add child elements and attributes to it,
and to build the rest of the XML document tree programmatically. Figure 8-4 shows the
resulting XML document tree.

 Reading RSS Feeds
RDF Site Summary (RSS) is an XML-based format originally devised by Netscape to
distribute information about the content on its My.Netscape.com portal. Today, RSS is
extremely popular on the Web as a way to distribute content; many Web sites offer RSS
“feeds” that contain links and snippets of their latest news stories or content, and most
browsers come with built-in RSS readers, which can be used to read and “subscribe” to
these feeds.

Figure 8-4 Dynamically generating a new XML document with SimpleXML

ch08.indd 266 9/10/08 6:05:00 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 267

An RSS document follows all the rules of XML markup and typically contains a list of
resources (URLs), marked up with descriptive metadata. Here’s an example:

<?xml version="1.0" encoding="utf-8"?>
<rss>
 <channel>
 <title>Feed title here</title>
 <link>Feed URL here</link>
 <description>Feed description here</description>
 <item>
 <title>Story title here</title>
 <description>Story description here</description>
 <link>Story URL here</link>
 <pubDate>Story timestamp here</pubDate>
 </item>
 <item>
 ...
 </item>
 </channel>
</rss>

As this sample document illustrates, an RSS document opens and closes with the
<rss> element. A <channel> block contains general information about the Web
site providing the feed; this is followed by multiple <item> elements, each of which
represents a different content unit or news story. Each of these <item> elements further
contains a title, a URL, and a description of the item.

Given this well-defined and hierarchical structure, parsing an RSS feed with
SimpleXML is extremely simple. That’s precisely what this next script does: it connects
to a URL hosting a live RSS feed, retrieves the XML-encoded feed data, parses it, and
converts it to an HTML page suitable for viewing in any Web browser. Here’s the code
(rss2html.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 8-3: Reading RSS Feeds</title>
 <style type="text/css">
 div.heading {
 font-weight: bolder;
 }
 div.story {
 background-color: white;
 border: 1px solid black;

(continued)

ch08.indd 267 9/10/08 6:05:00 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 268 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 width: 320px;
 height: 200px;
 margin: 20px;
 }
 div.headline a {
 font-weight: bolder;
 color: orange;
 margin: 5px;
 }
 div.body {
 margin: 5px;
 }
 div.timestamp {
 font-size: smaller;
 font-style: italic;
 margin: 5px;
 }
 ul {
 list-style-type: none;
 }
 li {
 float: left;
 }
 </style>
 </head>
 <body>
 <h2>Project 8-3: Reading RSS Feeds</h2>
<?php
// read newsvine.com's RSS feed for top technology news stories
$xml = simplexml_load_file("http://www.newsvine.com/_feeds/rss2
 /tag?id=technology") or die("ERROR: Cannot read RSS feed");
?>
 <h3 style="heading"><?php echo $xml->channel->title; ?></h3>

<?php
// iterate over list of stories
// print each story's title, URL and timestamp
// and then the story body
foreach ($xml->channel->item as $item) {
?>

 <div class="story">
 <div class="headline">
 <a href="<?php echo $item->link; ?>">
 <?php echo $item->title; ?>

 </div>

ch08.indd 268 9/10/08 6:05:00 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 269

 <div class="timestamp"><?php echo $item->pubDate; ?></div>
 <div class="body"><?php echo $item->description; ?></div>
 </div>

<?php
}
?>

 </body>
</html>

This script begins by using SimpleXML’s simplexml_load_file() method to
connect to a remote URL—in this case, an RSS feed hosted by NewsVine.com—and convert
the XML data found therein to a SimpleXML object. It then uses SimpleXML’s ability to
loop over node collections to quickly retrieve each news story’s title, URL, timestamp, and
body; marks these bits of information up with HTML; and prints them to the page.

Figure 8-5 illustrates what the output might look like.

Figure 8-5 Parsing an RSS feed with SimpleXML

ch08.indd 269 9/10/08 6:05:01 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 270 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Using PHP’s DOM Extension
Now, while PHP’s SimpleXML extension is easy to use and understand, it’s not very
good for anything other than the most basic XML manipulation. For more complex XML
operations, it’s necessary to look further afield, to PHP’s DOM extension. This extension,
which is also enabled by default in PHP 5, provides a sophisticated toolkit that complies
with the DOM Level 3 standard and brings comprehensive XML parsing capabilities
to PHP.

Working with Elements
The DOM parser works by reading an XML document and creating objects to represent
the different parts of that document. Each of these objects comes with specific methods
and properties, which can be used to manipulate and access information about it. Thus,
the entire XML document is represented as a “tree” of these objects, with the DOM parser
providing a simple API to move between the different branches of the tree.

To illustrate how this works in practice, let’s revisit the address.xml file from the
preceding section:

<?xml version='1.0'?>
<address>
 <street>13 High Street</street>
 <county>Oxfordshire</county>
 <city>
 <name>Oxford</name>
 <zip>OX1 1BA</zip>
 </city>
 <country>UK</country>
</address>

Here’s a PHP script that uses the DOM extension to parse this file and retrieve the
various components of the address:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('address.xml');

// get root element
$root = $doc->firstChild;

ch08.indd 270 9/10/08 6:05:01 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 271

// get text node 'UK'
echo "Country: " . $root->childNodes->item(3)->nodeValue . "\n";

// get text node 'Oxford'
echo "City: " . $root->childNodes->item(2)->childNodes->
 item(0)->nodeValue . "\n";

// get text node 'OX1 1BA'
echo "Postal code: " . $root->childNodes->item(2)->childNodes->
 item(1)->nodeValue . "\n";

// output: 'Country: UK \n City: Oxford \n Postal code: OX1 1BA'
?>

A quick glance, and it’s clear that we’re not in SimpleXML territory any longer.
With PHP’s DOM extension, the first step is always to initialize an instance of the
DOMDocument object, which represents an XML document. Once this object has been
initialized, it can be used to parse an XML file via its load() method, which accepts
the disk path to the target XML file.

The result of the load() method is a tree containing DOMNode objects, with every
object exposing various properties and methods for accessing its parent, child, and sibling
nodes. For example, every DOMNode object exposes a parentNode property, which can
be used to access its parent node, and a childNodes property, which returns a collection
of its child nodes. In a similar vein, every DOMNode object also exposes nodeName
and nodeValue properties, which can be used to access the node’s name and value
respectively. It’s thus quite easy to navigate from node to node of the tree, retrieving node
values at each stage.

To illustrate the process, consider the preceding script carefully. Once the XML
document has been load()-ed, it calls the DOMDocument object’s firstChild
property, which returns a DOMNode object representing the root element <address>.
This DOMNode object, in turn, has a childNodes property, which returns a collection
of all the child elements of <address>. Individual elements of this collection can be
accessed via their index position using the item() method, with indexing starting from
zero. These elements are again represented as DOMNode objects; as such, their names
and values are therefore accessible via their nodeName and nodeValue properties.

Thus, the element <country>, which is the fourth child element under <address>,
is accessible via the path $root->childNodes->item(3), and the text value of this
element, 'UK', is accessible via the path $root->childNodes->item(3)->nodeValue.
Similarly, the element <name>, which is the first child of the <city> element, is accessible
via the path $root->childNodes->item(2)->childNodes->item(0), and the
text value 'Oxford' is accessible via the path $root->childNodes->item(2)->
childNodes->item(0)->nodeValue.

ch08.indd 271 9/10/08 6:05:01 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 272 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Figure 8-6 should make these relationships clearer, by mapping the XML document
tree from address.xml to the DOM methods and properties used in this section.

Q: When I process an XML document using the DOM, there often appear to be extra
text nodes in each node collection. However, when I access these nodes, they appear
to be empty. What’s going on?

A: As per the DOM specification, all document whitespace, including carriage returns,
must be treated as a text node. If your XML document contains extra whitespace,
or if your XML elements are neatly formatted and indented on separate lines,
this whitespace will be represented in your node collections as apparently empty
text nodes. In the PHP DOM API, you can disable this behavior by setting the
DOMDocument->preserveWhiteSpace property to 'false', as the examples
in this section do.

Ask the Expert

An alternative approach—and one that can come in handy when you’re
faced with a deeply nested XML tree—is to use the DOMDocument object’s
getElementsByTagName() method to directly retrieve all elements with a particular
name. The output of this method is a collection of matching DOMNode objects; it’s then
easy to iterate over the collection with a foreach loop and retrieve the value of each node.

Figure 8-6 DOM relationships

<?xml?>

<address>

<street>

<county>

<country>

<city>

<name>

<zip>

DOMDocument

firstChild

childNodes–> item (0)

childNodes–> item (1)

childNodes–> item (0)

childNodes–> item (1)

childNodes–> item (2)

childNodes–> item (3)

ch08.indd 272 9/10/08 6:05:02 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 273

If your document happens to have only one instance of each element—as is the case
with address.xml—using getElementsByTagName() can serve as an effective shortcut
to the traditional tree navigation approach. Consider the following example, which
produces the same output as the preceding listing using this approach:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('address.xml');

// get collection of <country> elements
$country = $doc->getElementsByTagName('country');
echo "Country: " . $country->item(0)->nodeValue . "\n";

// get collection of <name> elements
$city = $doc->getElementsByTagName('name');
echo "City: " . $city->item(0)->nodeValue . "\n";

// get collection of <zip> elements
$zip = $doc->getElementsByTagName('zip');
echo "Postal code: " . $zip->item(0)->nodeValue . "\n";

// output: 'Country: UK \n City: Oxford \n Postal code: OX1 1BA'
?>

In this example, the getElementsByTagName() method is used to return a
DOMNode collection representing all elements with the name <country> in the first
instance. From the XML document tree, it’s clear that the collection will contain only
one DOMNode object. Accessing the value of this node is then simply a matter of calling
the collection’s item() method with argument 0 (for the first index position) to get the
DOMNode object, and then reading its nodeValue property.

In most cases, however, your XML document will not have only one instance of
each element. Take, for example, the library.xml file you’ve seen in previous sections,
which contains multiple instances of the <book> element. Even in such situations, the
getElementsByTagName() method is useful to quickly and efficiently create a subset
of matching nodes, which can be processed using a PHP loop. To illustrate, consider

ch08.indd 273 9/10/08 6:05:02 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 274 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

this next example, which reads library.xml and prints the title and author names found
within it:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// for each <book>, get the value of the <title> and <author> elements
// output: 'The Shining is written by Stephen King. \n ...'
$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('title')->item(0)->nodeValue;
 $author = $book->getElementsByTagName('author')->item(0)->nodeValue;
 echo "$title is written by $author.\n";
}
?>

In this case, the first call to getElementsByTagName() returns a collection
representing all the <book> elements from the XML document. It’s then easy to iterate
over this collection with a foreach() loop, processing each DOMNode object and
retrieving the value of the corresponding <title> and <author> elements with further
calls to getElementsByTagName().

TIP
You can return a collection of all the elements in a document by calling
DOMDocument-> getElementsByTagName(*).

To find out how many elements were returned by a call to getElementsByTagName(),
use the resulting collection’s length property. Here’s an example:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

ch08.indd 274 9/10/08 6:05:02 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 275

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// return a count of the total number of <book> elements
// output: '8 book(s) found.'
$books = $doc->getElementsByTagName('book');
echo $books->length . ' book(s) found.';
?>

Working with Attributes
The DOM also includes extensive support for attributes: every DOMElement object
comes with a getAttribute() method, which accepts an attribute name and returns the
corresponding value. Here’s an example, which prints each book’s rating and genre from
library.xml:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// for each book
// retrieve and print 'genre' and 'rating' attributes
// output: 'The Shining \n Genre: horror \n Rating: 5 \n\n ...'
$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('title')->item(0)->nodeValue;
 $rating = $book->getAttribute('rating');
 $genre = $book->getAttribute('genre');
 echo "$title\n";
 echo "Genre: $genre\n";
 echo "Rating: $rating\n\n";
}
?>

What if you don’t know the attribute name but simply want to process all attributes
of an element? Well, every DOMElement has an attributes property, which returns a
collection of all the element’s attributes. It’s easy to iterate over this collection to retrieve

ch08.indd 275 9/10/08 6:05:03 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 276 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Try This 8-4

each attribute’s name and value. The following example demonstrates, by revising the
preceding script to use this approach:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
// for each book
// retrieve and print all attributes
// output: 'The Shining \n id: 1 \n genre: horror \n rating: 5 \n\n ...'
$books = $doc->getElementsByTagName('book');
foreach ($books as $book) {
 $title = $book->getElementsByTagName('title')->item(0)->nodeValue;
 echo "$title\n";
 foreach ($book->attributes as $attr) {
 echo "$attr->name: $attr->value \n";
 }
 echo "\n";
}
?>

 Recursively Processing an XML
Document Tree

If you plan to work with XML and PHP in the future, this next project will almost
certainly come in handy some day: it’s a simple program that starts at the root of the XML
document tree and works its way through to the ends of its branches, processing every
element and attribute it finds on the way. Given the tree-like nature of an XML document,
the most efficient way to accomplish this task is with a recursive function—and given the
wealth of information supplied by the DOM, writing such a function is quite easy.

Assume for a moment that the XML document to be processed looks like this
(inventory.xml):

<?xml version='1.0'?>
<objects>
 <object color="red" shape="square">

ch08.indd 276 9/10/08 6:05:03 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 277

 <length units="cm">5</length>
 </object>
 <object color="red" shape="circle">
 <radius units="px">7</radius>
 </object>
 <object color="green" shape="triangle">
 <base units="in">1</base>
 <height units="in">2</height>
 </object>
 <object color="blue" shape="triangle">
 <base units="mm">100</base>
 <height units="mm">50</height>
 </object>
 <object color="yellow" shape="circle">
 <radius units="cm">18</radius>
 </object>
</objects>

And here’s the PHP code to recursively process this (or any other) XML document
using the DOM:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 8-4: Recursively Processing An XML Document</title>
 </head>
 <body>
 <h2>Project 8-4: Recursively Processing An XML Document</h2>
 <pre>
<?php
// recursive function to process XML node collection
function xmlProcess($node, $depthMarker) {

 // process this node's children
 foreach ($node->childNodes as $n) {
 switch ($n->nodeType) {

 // for elements, print element name
 case XML_ELEMENT_NODE:
 echo "$depthMarker $n->nodeName \n";
 // if the element has attributes
 // list their names and values
 if ($n->attributes->length > 0) {
 foreach ($n->attributes as $attr) {
 echo "$depthMarker <i>attr</i>: $attr->name => $attr->value \n";
 }
 }
 break;

(continued)

ch08.indd 277 9/10/08 6:05:03 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 278 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 // for text data, print value
 case XML_TEXT_NODE:
 echo "$depthMarker <i>text</i>: \"$n->nodeValue\" \n";
 break;
 }

 // if this node has a further level of sub-nodes
 // increment depth marker
 // run recursively
 if ($n->hasChildNodes()) {
 xmlProcess($n, $depthMarker . DEPTH_CHAR);
 }
 }
}
// end function definition

// define the character used for indentation
define ('DEPTH_CHAR', ' ');

// initialize DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('objects.xml');

// call recursive function with root element
xmlProcess($doc->firstChild, DEPTH_CHAR);
?>
 </pre>
 </body>
</html>

In this program, the user-defined xmlProcess() function is a recursive function
that works by accepting a DOMNode object as input, retrieving a collection of this node’s
children by reading the object’s childNodes property, and iterating over this collection
with a foreach loop. Depending on whether the current node is an element node or a text
node, it prints either the node name or the node value. If the node is an element node, it
performs an additional step of checking for attributes and printing those as necessary. A
“depth string” is used to indicate the hierarchical position of the node in the output; this
string is automatically incremented every time the loop runs.

Having completed all these tasks, the last action of the function is to check whether the
current node has any children; if it does, it calls itself recursively to process the next level
of the node tree. The process continues until no further nodes remain to be processed.

Figure 8-7 illustrates the output of the program when xmlProcess() is called with
the document’s root element as input argument.

ch08.indd 278 9/10/08 6:05:03 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 279

Altering Element and Attribute Values
Under the DOM, changing the value of an XML element is quite simple: navigate to the
DOMNode object representing the element and alter its nodeValue property to reflect
the new value. To illustrate, consider the following PHP script, which changes the title and
author of the second book in library.xml, and then outputs the revised XML document:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

Figure 8-7 Recursively processing an XML document with the DOM

ch08.indd 279 9/10/08 6:05:03 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 280 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

// get collection of <book> elements
$books = $doc->getElementsByTagName('book');

// change the <title> element of the second <book>
$books->item(1)->getElementsByTagName('title')->item(0)->nodeValue =
'Invisible Prey';

// change the <author> element of the second <book>
$books->item(1)->getElementsByTagName('author')->item(0)->nodeValue =
'John Sandford';

// output new XML string
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

Here, the getElementsByTagName() method is used to first obtain a collection of
<book> elements and navigate to the second element in this collection (index position: 1).
It’s then used again, to obtain references to DOMNode objects representing the <title>
and <author> element. The nodeValue properties of these objects are then assigned
new values using PHP’s assignment operator, and the revised XML tree is converted back
into a string with the DOMDocument object’s saveXML() method.

Changing attribute values is just as easy: assign a new value to an attribute using the
corresponding DOMElement object’s setAttribute() method. Here’s an example,
which changes the sixth book’s 'rating' and outputs the result:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
$books = $doc->getElementsByTagName('book');

// change the 'genre' element of the fifth <book>
$books->item(4)->setAttribute('genre', 'horror-suspense');

// output new XML string
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

ch08.indd 280 9/10/08 6:05:04 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 281

Creating New XML Documents
The DOM comes with a full-fledged API for creating new XML documents, or for
grafting elements, attributes, and other XML structures on to an existing XML document
tree. This API, which is much more sophisticated than that offered by SimpleXML, should
be your first choice when dynamically creating or modifying an XML document tree
through PHP.

The best way to illustrate this API is with an example. Consider the following script,
which sets up a new XML file from scratch:

<?php
// initialize new DOMDocument
$doc = new DOMDocument('1.0');

// create and attach root element <schedule>
$root = $doc->createElement('schedule');
$schedule = $doc->appendChild($root);

// create and attach <course> element under <schedule>
$course = $doc->createElement('course');
$schedule->appendChild($course);

// create and attach <title> element under <course>
// add a value for the <title> element
$title = $doc->createElement('title');
$titleData = $doc->createTextNode('Macro-Economics');
$course->appendChild($title);
$title->appendChild($titleData);

// create and attach <teacher> element under <course>
// add a value for the <teacher> element
$teacher = $doc->createElement('teacher');
$teacherData = $doc->createTextNode('Professor Q. Draw');
$course->appendChild($teacher);
$teacher->appendChild($teacherData);

// create and attach <credits> element under <course>
// add a value for the <credits> element
$credits = $doc->createElement('credits');
$creditData = $doc->createTextNode('4');
$course->appendChild($credits);
$credits->appendChild($creditData);

// attach an attribute 'transferable' to the <credits> element
// set a value for the attribute
$transferable = $doc->createAttribute('transferable');

ch08.indd 281 9/10/08 6:05:04 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 282 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

$credits->appendChild($transferable);
$credits->setAttribute('transferable', 'no');

// format XML output
$doc->formatOutput = true;

// output new XML string
header('Content-Type: text/xml');
echo $doc->saveXML();
?>

Figure 8-8 illustrates the XML document generated by this script.
This script introduces some new methods, all related to dynamically creating XML

nodes and attaching them to an XML document tree. There are two basic steps involved in
this process:

 1. Create an object representing the XML structure you wish to add. The base DOMDocument
object exposes create...() methods corresponding to each of the primary XML
structures: createElement() for element objects, createAttribute() for attribute
objects, and createTextNode() for character data.

Figure 8-8 Dynamically generating a new XML document with the DOM

ch08.indd 282 9/10/08 6:05:04 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 283

 2. Attach the newly minted object at the appropriate point in the document tree, by calling
the parent’s appendChild() method.

The previous listing illustrates these steps, following a specific sequence to arrive at
the result tree shown in Figure 8-8.

 1. It begins by first initializing a DOMDocument object named $doc and then calling
its createElement() method to generate a new DOMElement object named
$schedule. This object represents the document’s root element; as such, it is attached
to the base of the DOM tree by calling the $doc->appendChild() method.

 2. One level below the root <schedule> element comes a <course> element. In DOM
terms, this is accomplished by creating a new DOMElement object named $course
with the DOMDocument object’s createElement() method, and then attaching
this object to the tree under the <schedule> element by calling $schedule->
appendChild().

 3. One level below the <course> element comes a <title> element. Again, this is
accomplished by creating a DOMElement object named $title and then attaching
this object under <course> by calling $course->appendChild(). There’s a twist
here, though: the <title> element contains the text value 'Macro-Economics'.
To create this text value, the script creates a new DOMTextNode object via the
createTextNode() object, populates it with the text string, and then attaches it as
a child of the <title> element by calling $title->appendChild().

 4. The same thing happens a little further along, when creating the <credits> element.
Once the element and its text value have been defined and attached to the document
tree under the <course> element, the createAttribute() method is used to create
a new DOMAttr object to represent the attribute 'transferable'. This attribute is
then attached to the <credits> element by calling $credits->appendChild(),
and a value is assigned to the attribute in the normal fashion, by calling $credits->
setAttribute().

Converting Between DOM and SimpleXML
An interesting feature in PHP is the ability to convert XML data between DOM and
SimpleXML. This is accomplished by means of two functions: the simplexml_import_
dom() function, which accepts a DOMElement object and returns a SimpleXML object,

ch08.indd 283 9/10/08 6:05:05 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 284 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

Try This 8-5

and the dom_import_simplexml() function, which does the reverse. The following
example illustrates this interoperability:

<?php
// initialize new DOMDocument
$doc = new DOMDocument();

// disable whitespace-only text nodes
$doc->preserveWhiteSpace = false;

// read XML file
$doc->load('library.xml');

// get collection of <book> elements
$books = $doc->getElementsByTagName('book');

// convert the sixth <book> to a SimpleXML object
// print title of sixth book
// output: 'Glory Road'
$sxml = simplexml_import_dom($books->item(5));
echo $sxml->title;
?>

 Reading and Writing XML
Configuration Files

Now that you know how to read and create XML document trees programmatically, let’s
use this knowledge in an application that’s increasingly popular these days: XML-based
configuration files, which use XML to mark up an application’s configuration data.

The next listing illustrates this in action, generating a Web form that allows users to
configure an oven online by entering configuration value for temperature, mode, and heat
source. When the form is submitted, the data entered by the user is converted to XML and
saved to a disk file. When users revisit the form, the data previously saved to the file is
read and used to prefill the form’s fields.

Here’s the code (configure.php):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Project 8-5: Reading And Writing XML Configuration Files</title>
 </head>

ch08.indd 284 9/10/08 6:05:05 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 285

 <body>
 <h2>Project 8-5: Reading And Writing XML Configuration Files</h2>
 <h3 style="background-color: silver">Oven Configuration</h3>
<?php
 // define configuration file name and path
 $configFile = 'config.xml';

 // if form not yet submitted
 // display form
 if (!isset($_POST['submit'])) {

 // set up array with default parameters
 $data = array();
 $data['mode'] = null;
 $data['temperature'] = null;
 $data['duration'] = null;
 $data['direction'] = null;
 $data['autooff'] = null;

 // read current configuration values
 // use them to pre-fill the form
 if (file_exists($configFile)) {
 $doc = new DOMDocument();
 $doc->preserveWhiteSpace = false;
 $doc->load($configFile);
 $oven = $doc->getElementsByTagName('oven');
 foreach ($oven->item(0)->childNodes as $node) {
 $data[$node->nodeName] = $node->nodeValue;
 }
 }
?>
 <form method="post" action="configure.php">
 Mode:

 <select name="data[mode]">
 <option value="grill" <?php echo ($data['mode'] == 'grill') ?
'selected' : null; ?>>Grill</option>
 <option value="bake" <?php echo ($data['mode'] == 'bake') ?
'selected' : null; ?>>Bake</option>
 <option value="toast" <?php echo ($data['mode'] == 'toast') ?
'selected' : null; ?>>Toast</option>
 </select>

 <p>

 Temperature:

 <input type="text" size="2" name="data[temperature]" value="<?php echo
$data['temperature']; ?>"/>

 <p>

(continued)

ch08.indd 285 9/10/08 6:05:05 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 286 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Duration (minutes):

 <input type="text" size="2" name="data[duration]" value="<?php echo
$data['duration']; ?>"/>

 <p>

 Heat source and direction:

 <input type="radio" name="data[direction]" value="top-down" <?php echo
($data['direction'] == 'top-down') ? 'checked' : null; ?>>Top, downwards</input>
 <input type="radio" name="data[direction]" value="bottom-up" <?php echo
($data['direction'] == 'bottom-up') ? 'checked' : null; ?>>Bottom, upwards
</input>
 <input type="radio" name="data[direction]" value="both" <?php echo
($data['direction'] == 'both') ? 'checked' : null; ?>>Both</input>

 <p>

 Automatically power off when done:
 <input type="checkbox" name="data[autooff]" value="yes" <?php echo
($data['autooff'] == 'yes') ? 'checked' : null; ?>/>

 <p>

 <input type="submit" name="submit" value="Submit" />
 </form>
<?php
 // if form submitted
 // process form input
 } else {
 // read submitted data
 $config = $_POST['data'];

 // validate submitted data as necessary

 if ((trim($config['temperature']) == '') || (trim($config['temperature'])
!= '' && (int)$config['temperature'] <= 0)) {
 die('ERROR: Please enter a valid oven temperature');
 }

 if ((trim($config['duration']) == '') || (trim($config['duration']) != ''
&& (int)$config['duration'] <= 0)) {
 die('ERROR: Please enter a valid duration');
 }

 // generate new XML document
 $doc = new DOMDocument();

 // create and attach root element <configuration>
 $root = $doc->createElement('configuration');
 $configuration = $doc->appendChild($root);

ch08.indd 286 9/10/08 6:05:05 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 287

 // create and attach <oven> element under <schedule>
 $oven = $doc->createElement('oven');
 $configuration->appendChild($oven);

 // write each configuration value to the file
 foreach ($config as $key => $value) {
 if (trim($value) != '') {
 $elem = $doc->createElement($key);
 $text = $doc->createTextNode($value);
 $oven->appendChild($elem);
 $elem->appendChild($text);
 }
 }

 // format XML output
 // save XML file
 $doc->formatOutput = true;
 $doc->save($configFile) or die('ERROR: Cannot write configuration file');
 echo 'Configuration data successfully written to file.';
 }
?>
 </body>
</html>

Figure 8-9 illustrates the Web form generated by this script.
Once this form is submitted, the data entered into it arrives in the form of an

associative array, whose keys correspond to XML element names. This data is first
validated, and the DOM API is then used to generate a new XML document tree
containing these elements and their values. Once the tree is completely generated, the
DOMDocument object’s save() function is used to write the XML to a disk file.

Here’s an example of what the XML output file config.xml would look like after
submitting the form in Figure 8-9:

<?xml version="1.0"?>
<configuration>
 <oven>
 <mode>toast</mode>
 <temperature>22</temperature>
 <duration>1</duration>
 <direction>bottom-up</direction>
 <autooff>yes</autooff>
 </oven>
</configuration>

If a user revisits the Web form, the script first checks if a configuration file named
config.xml exists in the current directory. If it does, the XML data in the file is read into
a new DOMDocument object with the load() method and converted into an associative

(continued)

ch08.indd 287 9/10/08 6:05:05 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 288 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

array by iterating over the list of child nodes in a loop. The various radio buttons, check
boxes, and selection lists in the form are then checked or preselected, depending on the
values in this array.

Figure 8-10 illustrates the form, prefilled with data read from the XML configuration
file.

If the user submits the Web form with new values, these new values will again be
encoded in XML and used to rewrite the configuration file. Because the configuration is
expressed in XML, any application that has XML parsing capabilities can read and use
this data. XML, when used in this fashion, thus provides a way to transfer information
between applications, even if they’re written in different programming languages or run
on incompatible operating systems.

Figure 8-9 A Web form for configuration data

ch08.indd 288 9/10/08 6:05:06 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 289

Summary
At the end of this chapter, you should know enough to begin writing PHP programs
that can successfully interact with XML-encoded data. This chapter began with an
introduction to XML, explaining basic XML structures like elements, attributes, and
character data, and providing a crash course in XML technologies and parsing methods.
It then proceeded into a discussion of two of PHP’s most popular extensions for XML
processing, the SimpleXML and DOM extensions, and showed you how each of these
extensions could be used to access element and attribute values, create node collections,
and programmatically generate or change XML document trees. Various projects, ranging
from an XML-to-SQL converter to an RSS feed parser, were used to illustrate practical
applications of the interface between XML and PHP.

Figure 8-10 The same Web form, prefilled with configuration data

ch08.indd 289 9/10/08 6:05:06 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 290 PHP: A Beginner’s Guide

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

XML is an extensive topic, and the material in this chapter barely begins to scratch its
surface. However, there are many excellent tutorials and articles on XML and PHP on the
Web, and links to some of these are presented here, should you be interested in learning
more about this interesting and continually changing field:

● XML basics, at www.melonfire.com/community/columns/trog/article.php?id=78
and www.melonfire.com/community/columns/trog/article.php?id=79

● XPath basics, at www.melonfire.com/community/columns/trog/article.php?id=83

● XSL basics, at www.melonfire.com/community/columns/trog/article.php?id=82
and www.melonfire.com/community/columns/trog/article.php?id=85

● SimpleXML functions, at www.php.net/simplexml

● DOM API functions in PHP, at www.php.net/dom

● The DOM specification, at www.w3.org/DOM/

● Building XML documents using PHP and PEAR, at
www.melonfire.com/community/columns/trog/article.php?id=180

● Serializing XML, at
www.melonfire.com/community/columns/trog/article.php?id=244

● Performing XML-based Remote Procedure Calls (RPC) with PHP, at
www.melonfire.com/community/columns/trog/article.php?id=274

 Chapter 8 Self Test
 1. What are the two methods of parsing an XML document, and how do they differ?

 2. Name two characteristics of a well-formed XML document.

 3. Given the following XML document (email.xml), write a program to retrieve and print
all the e-mail addresses from the document using SimpleXML:

<?xml version='1.0'?>
<data>
 <person>
 <name>Clone One</name>
 <email>one@domain.com</name>
 </person>
 <person>
 <name>Clone SixtyFour</name>
 <email>sixtyfour@domain.com</name>
 </person>

✓

ch08.indd 290 9/10/08 6:05:06 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8

 Chapter 8: Working with XML 291

 <person>
 <name>Clone Three</name>
 <email>three@domain.com</name>
 </person>
 <person>
 <name>Clone NinetyNine</name>
 <email>ninetynine@domain.com</name>
 </person>
</data>

 4. Given the following XML document (tree.xml), suggest three different ways to retrieve
the text value 'John' using the DOM:

<?xml version='1.0'?>
<tree>
 <person type="grandpa" />
 <person type="grandma" />
 <children>
 <person type="pa" />
 <person type="ma" />
 <children>
 <person type="bro">
 <name>John</name>
 </person>
 <person type="sis">
 <name>Jane</name>
 </person>
 </children>
 </children>
</tree>

 5. Write a program to count the number of elements in an XML file. Use the DOM.

 6. Write a program to process the library.xml file from earlier in this chapter, increase
each book’s rating by 1, and print the revised output. Use SimpleXML.

 7. Write a program that connects to a MySQL database and retrieves the contents of any
one of its tables as an XML file. Use the DOM.

ch08.indd 291 9/10/08 6:05:06 PM

BeginNew / PHP: A Beginner’s Guide / Vikram Vaswani / 901-3 / Chapter 8
Blind Folio: 292

ch08.indd 292 9/10/08 6:05:07 PM

